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Abstract

Tracking by detection based object tracking methods en-

counter numerous complications including object appear-

ance changes, size and shape deformations, partial and full

occlusions, which make online adaptation of classifiers and

object models a substantial challenge.

In this paper, we employ an object proposal network that

generates a small yet refined set of bounding box candidates

to mitigate the this object model refitting problem by con-

centrating on hard negatives when we update the classifier.

This helps improving the discriminative power as hard neg-

atives are likely to be due to background and other distrac-

tions. Another intuition is that, in each frame, applying the

classifier only on the refined set of object-like candidates

would be sufficient to eliminate most of the false positives.

Incorporating an object proposal makes the tracker robust

against shape deformations since they are handled natu-

rally by the proposal stage. We demonstrate evaluations on

the PETS 2016 dataset and compare with the state-of-the-

art trackers. Our method provides the superior results.

1. Introduction

Object tracking has been widely studied [31, 28, 19, 30]

owing to its extensive applications from video surveillance

to robotic vision. Robust and reliable tracking enables high

level visual tasks. However, as we can see in Figure 1,

real-life scenarios, especially surveillance videos, comprise

many challenges:

• Pose and shape change – Humans have articulated bod-

ies and they do not always stand up as depicted in the

first row of Figure 1.

• Occlusion – In crowded scenes humans occlude each

∗This work was supported under the Australian Research Councils Dis-

covery Projects funding scheme (project DP150104645, DP120103896),
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Figure 1: Typical video clips from the PETS 2016 dataset.

Green bounding boxes denote ground truth annotations. As

visible, objects undergo drastic size changes, deformations

and partial occlusions, which cause obstacles for conven-

tional object trackers. Our method handles these challenges

naturally using object proposals generated by a deep convo-

lutional neural network.

other frequently in the camera view as shown in the

second row of Figure 1.

• Size change – Cameras are usually positioned to cap-

ture as wide viewing angles as possible. This causes

objects to sustain significant size changes especially

when they move along the imaging plane normal di-

rection, e.g when humans enter the scene from faraway

locations, as shown in the last row of Figure 1.

Most object trackers incorporate either a generative or

a discriminative learning strategy to train their appearance

models. Generative learning based models including the

subspace learning [24] and sparse representation [21, 17,

15] mainly concentrate on how to construct an object rep-
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resentation in specific feature spaces. In contrast, discrim-

inative learning based appearance models aim to maximize

the inter-class separability between the object and back-

ground regions using discriminative learning techniques,

e.g. SVMs [2, 32, 35, 33], random forest [26], ridge re-

gression [11, 6, 12] and multiple instance learning [3, 32],

to name a few.

To adapt appearance changes due to deformations, size

and shape changes, object models have to be processed and

updated in an online manner using previous estimations.

Since the appearance models are trained on the previous

estimations and only a few positive training samples from

the initial frames are reliable, it is considerably hard for

these trackers to make accurate bounding box estimations

when the target objects undergo drastic appearance changes.

Once the tracker starts drifting, the location and overlap er-

rors accumulate quickly distorting object model recursively

and eventually leading up to a total tracking failure.

In this work, we introduce an object proposal genera-

tion procedure for handling the problem of model degrada-

tion. We obtain a small yet high-quality set of object pro-

posals efficiently in the entire frame using a deep convo-

lutional neural network (CNN) called region proposal net-

work (RPN) [23] as shown in Figure 2. This network was

trained offline using a large image dataset. When applied

to a given image, it generates bounding boxes on the image

regions that are likely to contain objects.

The benefits of using object proposals are fourfold:

• Since the extracted object proposals cover only

“object-like” regions, a “regularity” for the tracking

procedure is imposed by reducing the spurious false

positives.

• Object proposals also suggest good negative samples

for training as they correspond to possible distractions

that may otherwise deteriorate the tracking process.

• The bounding boxes naturally accommodate size

changes of the object.

• Tracking by object proposals enables tracking any ob-

ject motion at any frame rate.

We validate the above arguments on the PETS 2016

[1] dataset comparing with several state-of-the-art trackers.

Our method accomplishes the best precision score of 58.5
where the second best is achieved by EBT [34] with 52.6.

2. Related Work

We first review the current work using CNN features for

visual tracking. Then, we give a simple introduction of ob-

ject proposal methods and discuss some relative studies rel-

evant to our method.

Convolutional Neural Networks for Tracking

Although significant advances have been attained by

CNNs for object detection and classification tasks [25],

there are comparably limited adaptations of CNNs for track-

ing task and most CNN based trackers use such networks to

learn better features. In their pioneering work [16] employs

a candidate pool of multiple CNNs as a data-driven model

of different instances of the target object. Inspired by this,

[20] interprets the hierarchies of convolutional layers as a

nonlinear counterpart of an image pyramid representation

and adaptively learns correlation filters on each convolu-

tional layer to encode the target appearance. The recent

work in [22] pretrains a CNN using a large set of videos

with ground truth trajectories. The network is composed of

shared layers and multiple branches of domain-specific lay-

ers. They train the network with respect to each domain iter-

atively to obtain generic target representations in the shared

layers. In contrast, our method applies the CNN in a differ-

ent fashion for both object proposal generation and feature

extraction at the same time.

Object Proposals

As reported in [13, 36], use of proposal significantly im-

proves the object detection benchmark along with the con-

volutional neural nets. Since, a subset of high-quality candi-

dates are used for detection, object proposal methods boost

not only the speed but also the accuracy by reducing false

positives. The top performing detection methods [8, 29] for

PASCAL VOC [7] use detection proposals.

The EdgeBoxes method [36] proposes object candidates

based on the observation that the number of contours wholly

enclosed by a bounding box is an indicator of the likeli-

hood of the box containing an object. It is designed as a

fast algorithm to balance between speed and proposal recall.

BING [5] makes a similar observation that generic objects

with well-defined closed boundary can be discriminated by

looking at the norm of gradients. R-CNN [23] introduces

the region proposal network (RPN), which is a fully end-

to-end convolutional network that simultaneously predicts

object bounds and objectness scores at each position. It

shares full-image convolutional features with the detection

network, thus enabling nearly cost-free region proposals.

Since it enables efficient extraction of object proposals

and deep features, we employ . RPN as the proposal gener-

ator in this paper.

Object Proposals for Tracking

A straightforward strategy based on linear combination

of the original tracking confidence and an adaptive object-

ness score obtained by BING [5] is employed in [18]. In

[14], a detection proposal scheme is applied as a post-

processing step, mainly to improve the tracker’s adaptabil-

ity to scale and aspect ratio changes. More recent trackers

[33, 34] are the most relevant approaches to ours. Here, we

take the advantage of the deep networks and achieve better

performance for PETS 2016 dataset.
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Figure 2: Framework of the proposed method. In a new frame t + 1, an offline VGG network [27] is used to generate a

feature map, which is then fed to the region proposal network (RPN) [23] to obtain candidate bounding boxes. Region of

interest (RoI) pooling layer extracts feature vectors with a fixed size for the online structured support vector machine (SSVM)

[4] that serves as the classifier. The proposal with the maximal response is assigned as the new location of the object. We call

our method as Region Proposal Network Tracker; RPNT.

3. Proposed Tracker: RPNT

Our method follows a popular structured support vector

machine (SSVM) based tracking-by-detection framework

[4, 10]. The object location is initialized manually at the

first frame t = 1. Denote Bt as a bounding box at frame

t and can be represented as coordinates of its four corners.

Then, given a classification function Ft−1 trained on the

previous frames, the current location of the object is esti-

mated through:

B⋆

t = argmaxBt∈Bt
Ft−1(Bt), (1)

where Bt is a set of candidate samples at the current frame.

To select samples, traditional trackers use heuristic search

windows around the previously estimated object location

for computational reasons. They apply each sample into

a classifier. For example, a search radius of 30 pixels is

used in [10]. Suppose the support vector set maintained by

SSVM as Vt−1 and the classification function can be written

as a weighted sum of affinities:

Ft−1(Bt) =
∑

Bi

t−1
∈Vt−1

wi

t−1
K(Bi

t−1
, Bt), (2)

where wi
t−1

is a scalar weight associated with the support

vector Bi
t−1

. Kernel function K(Bi
t−1

, Bt) calculates the

affinity between two feature vectors extracted from Bi
t−1

and Bt respectively.

The classifier will then revise its model with the new lo-

cation of the object to adapt appearance changes. To update

the support vector set Vt−1 → Vt in an online fashion, a

critical step is the selection of negative supports vector ac-

cording to the following function:

B−
t = argmaxBt∈Bt\ B⋆

t

Ft−1(Bt) + L(Bt, B
⋆

t ), (3)

where the loss function L(Bt, B
⋆
t ) = 1 − (Bt ∩ B⋆

t )/
(Bt ∪B⋆

t ) defines on the bounding box overlap. Optimiza-

tion (3) corresponds to finding such a negative training sam-

ple that locates far from the positive one (high L(Bt, B
⋆
t ))

yet presents close appearance (high Ft−1(Bt)). For more

details, refer to [10].

3.1. Region Proposal Network

The method proposed in this paper uses a similar frame-

work as introduced above, yet we made one critical change

to it. We recognize not all candidate bounding boxes Bt ∈
Bt should be treated equally (as the traditional trackers of-

ten do) since those boxes possess different “object-like” ap-

pearance, i.e. “objectness” characteristics, which should be

taken into account.

To this end, we have incorporated the region proposal

network (RPN) [23] to generate a small set of candidate

bounding boxes (as shown in Figure 2), denoted as BC
t .

This network is basically a combined classification and re-

gression layer built upon a feature map extracted from a

pretrained CNN network such as VGG[27]. We use the im-

plementation of RPN from [23] which is pretrained on the

PASCAL VOC dataset [7].

Similar to [34], we additionally generate a bounding box

set by sampling only around the previous object location

as BR
t (as in traditional methods). We find them useful to
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help smoothen the tracking trajectory as the object proposal

component works independently at each frame, which in-

evitably results temporally inconsistent proposals. Thus a

combined set of Bt = BC
t ∪BR

t is used during the test stage.

However, we only update the classifier when the estimated

one is from BC
t to resist potential corruption. More details

in Section 3.4.

3.2. Deep Feature Extraction

Like other CNN trackers [16, 20, 22], we extract deep

features from the pretrained deep network. It is convenient

to apply the extraction in our framework as the RPN is built

on the deep feature map. We employ a spatial pooling layer

[9] to avoid warping each image patch independently corre-

sponding to bounding box candidates of various sizes. The

feature pooling layer takes all the candidates in a single shot

and saves computational cost by sharing the feature map.

3.3. Candidates Classification

Instead of Eq.1, we use the following decision function

to estimate the new location of the object:

B⋆

t = argmaxBt∈Bt
Ft−1(Bt) + S(Bt, B

⋆

t−1
). (4)

S(Bt, B
⋆
t−1

) is a term representing the motion smooth-

ness between the previous object location and the candi-

date box. This is important in our formulation as we are

testing candidates generated from various locations at the

frame. We use a simple weighting function in this paper:

S(Bt, B
⋆
t−1

) = min(σ‖c(Bt)− c(B⋆
t−1

)‖, 1), where c(Bt)
is the center of bounding box Bt and σ is a constant.

3.4. Online Updating with Proposals

During the update stage, we use both of BC
t and BR

t to

choose negative support vector. BC
t \B

⋆
t represents other

good “object-like” regions and training with them increases

the discriminative power among “objects-like” candidates.

BR
t is used for training as well as the negative sample space

contains a lot more other negative samples.

As mentioned in Section 3.1, we treat the estimated re-

sult B⋆
t as an indication for model updating. This is to say,

when B⋆
t ∈ BR

t , we assume that there is no good object

proposal and the current estimation is a compromise for tra-

jectory smoothness, thus skipping the model updating. If

B⋆
t ∈ BC

t , then it suggests a good estimation which has both

maximal classifier response and high “objectness”, then we

update the object model immediately.

4. Experiments on PETS

We evaluate the proposed method on several video se-

quences from Performance Evaluation of Tracking and

Surveillance (PETS) 2016 [1]:

• N1 ARENA-01 02 TRK RGB 2: three humans walk-

ing in parallel towards the camera, significant size

change, as shown in the last row of Figure 1.

• W1 ARENA-11 03 ENV RGB 3: two humans

crashed, one was pulled down by the other, articulated

body deformation, as shown in Figure 4 (a).

• W1 ARENA-11 03 TRK RGB 1: Another view-

ing angle of “W1 ARENA-11 03 ENV RGB 3”, as

shown in Figure 4 (b).

• A1 ARENA-15 06 TRK RGB 2: Four humans fight-

ing, one was pulled down, occlusion and body defor-

mation, as shown in Figure 4 (c-f).

We list the details of the four sequences in Table 1 with

corresponding attributes labeled. As we can see, all se-

quences contain the attribute of size change, while sequence

“A1 ARENA-15 06 TRK RGB 2” is the most challenging

video containing size change, deformation and occlusion.

All trackers are initialized at the same frame of each se-

quence using a human detector [23].

4.1. Compared Trackers and Evaluation Metrics

Our method is denoted as RPNT and we compare it with

several state-of-the-art trackers: EBT [34], MUSTer [12],

SRDCF [6], KCF [11], Struck [10] and MEEM [32]. Most

of them have been ranked at the top positions in recent large

benchmarks [31, 28, 19, 30]. Among these trackers, EBT

uses a similar proposal framework with EdgeBox [36] used

as candidate generation algorithm. MUSTer and SRDCF

improve the KCF tracking system. MEEM is an improved

support vector machine tracker. Stuck uses the same SSVM

classification model as ours, with a local uniform sampling

scheme. For all the trackers, we use their default settings.

Evaluation metrics and code are provided by the bench-

mark [31, 30]. We employ the one-pass evaluation (OPE)

and use two metrics: precision plot and success plot. The

former one calculates the percentage (precision score) of

frames whose center location is within a certain threshold

distance with the ground truth. A commonly used threshold

is 20 pixels. The latter one calculates a same percentage but

based on bounding box overlap threshold. We utilize the

area under curve (AUC) as an indicative measurement for

it.

Parameters For the RPN setting, non-maximum sup-

pression parameter is fixed at 0.7. The maximal number of

proposal is 600. Notice that a typical number of proposals

actually generated for PETS 2016 is about 400. For the set-

ting in SSVM, we use the same parameters as used in EBT

[34]. For the smooth motion function S(Bt, B
⋆
t−1

) in Eq.4,

σ is set as the diagonal length of the initialized bounding

box.
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videos #humans #frames size change deformation occlusion

N1 ARENA-01 02 TRK RGB 2 3 115 Yes No No

W1 ARENA-11 03 ENV RGB 3 2 107 Yes Yes No

W1 ARENA-11 03 TRK RGB 1 2 101/148 Yes Yes No

A1 ARENA-15 06 TRK RGB 2 3 582/198/195 Yes Yes Yes

Table 1: Details of the tested video sequences from the PETS 2016 dataset.

Notice that, we fix all of the parameters for all of the se-

quences. We do not fine-tune parameter values for optimal

performance.

4.2. Quantitative Experimental Results

The quantitative experimental results can be found in Ta-

ble 2 and Figure 3. In Table 2, we have details of the track-

ing results for each human being tracked in the four videos.

We report precision score (center distance threshold at 20

pixels) and area under curve (AUC) of the success plot re-

spectively. In Figure 3, results at various thresholds can be

found and they are ranked using precision score or AUC of

success plot.

Our method, PRNT, achieves the best overall perfor-

mance among the compared trackers. Especially when

compared with EBT, which is the closest method to ours,

we have a 1.5% improvement in AUC of success plot and

5.9% in term of precision score. This shows the advan-

tage of using deep CNN based feature and object proposal

method, comparing to the contour based proposal approach

(RPN vs EdgeBox) and crafted feature (deep feature vs in-

tensity histogram). More discussion is in Section 4.5.

The results also demonstrates that the object proposal

based framework works noticeably better than conventional

trackers which explore only the information from the video

itself, on the PETS 2016. The EBT and proposed RPNT

outperforms the best non-proposal tracker, SRDCF, 4%+ in

AUC metric and 1.3%+ in precision score. It indicates the

robustness of the incorporated “objectness” cues when the

videos contain drastic appearance changes.

4.3. Size Adaption

From the results, we can see the importance of the

tracker’s ability to adapt the size change. As from Table 1,

all four video sequences contain the attribute of size change.

While in the participated trackers, ours method and EBT

adapt the size change naturally during proposing the object

candidates. MUSTer and SRDCF additionally build a cor-

relation filter in the scale space and select the one with the

maximal response. In contrast, KCF, Struck and MEEM are

all fixing the bounding box size thorough the tracking.

It is clear to see the differences when looking at the AUC

metric, as the best non-size-adapt tracker, MEEM, achieves

35.6%, comparing to 51.5% of RPNT. While in term of pre-

cision score, KCF manages to achieve 50.6%, comparing to

58.5% of RPNT. This is surprising, as it does not lose the

object totally. However, it would be better if the size change

could be adapted from the first place.

4.4. Qualitative Experimental Analysis

We illustrate several qualitative results in Figure 4

from top ranked trackers: RPNT, EBT, SRDCF and

MUSTer, for an intuitive analysis. The demonstrated

results are from “W1 ARENA-11 03 ENV RGB 3”,

“W1 ARENA-11 03 TRK RGB 1” and “A1 ARENA-

15 06 TRK RGB 2”. Especially, the last one contains

occlusion, deformation as well as size change.

As we can see from the illustrated figures, the proposed

RPNT adapts the size and appearance change naturally in

most circumstances. For the challenging “A1 ARENA-

15 06 TRK RGB 2” video, the RPNT shows strong robust-

ness while most of other trackers start to drift.

4.5. Proposal and Feature

We also test two PRNT variants: (1) using EdgeBox pro-

posal and deep feature; (2) using RPN with histogram of

intensity (HoI) feature. The results are included in Table

3. We can see that the first variant using “EdgeBox + Deep

feature” generates a similar result to RPNT while the lat-

ter one, “RPN + HoI” generates a relatively inferior result.

This demonstrates the importance of applying the deep fea-

ture while EdgeBox performs as well as RPN.

Table 3: Performance of two variants.

EB + Deep feature RPN + HoI feature

PETS (AUC/PS) 51.1/57.6 50.5/53.5

4.6. Computational Cost

The running speed of the proposed RPNT is reported

in Table 2. The RPN and feature pooling network are im-

plemented using GPU. They are running at a similar speed

as EdgeBox proposal method. Overall, our method runs a

close speed to EBT and Struck. As the SSVM classifier is

currently implemented in C++ and an interface between the

proposal component and SSVM is needed, RPNT could be

further speed up with code optimization.

30



videos Pro. RPNT EBT [34] MUSTer [12] SRDCF [6] KCF [11] Struck [10] MEEM [32]

N1 ARENA-01 02 TRK RGB 2 73.6/99.1 68.0/72.2 74.7/97.4 72.8/100.0 58.6/99.1 57.3/100.0 57.8/53.9
61.2/95.7 65.9/86.1 47.4/91.3 64.2/80.0 44.8/93.9 47.9/96.5 47.2/92.2
59.4/87.8 69.3/89.6 64.6/94.8 67.1/94.8 47.0/99.1 16.7/20.9 40.7/22.6

W1 ARENA-11 03 ENV RGB 3 64.0/100.0 49.5/100.0 56.3/98.1 57.5/100.0 43.8/85.0 41.7/85.0 44.4/82.2
42.9/81.3 43.9/82.2 21.3/47.7 21.8/57.0 25.1/63.6 48.2/93.5 40.8/100.0

W1 ARENA-11 03 TRK RGB 1 9.6/6.9 9.2/4.0 12.3/5.9 8.5/5.9 11.1/5.9 24.4/24.6 9.4/5.9
39.2/25.7 45.6/15.5 18.5/5.4 21.2/2.0 20.9/2.0 45.8/12.2 11.7/1.4

A1 ARENA-15 06 TRK RGB 2 51.4/21.5 46.4/8.4 4.4/1.0 44.2/2.7 4.5/1.0 24.4/24.6 4.5/0.9
57.9/29.2 47.9/11.7 40.6/12.4 34.2/10.7 64.4/28.5 63.0/17.8 63.4/15.1
55.8/37.9 54.0/56.4 63.0/61.5 68.4/60.0 31.3/28.2 18.4/15.4 31.7/24.6

Overall 51.5/58.5 50.0/52.6 40.3/51.6 46.0/51.3 35.1/50.6 35.3/44.8 35.6/40.1

fps 3.8 4.4 2.1 7.8 70.9 4.8 8.8

Table 2: Area Under Curve (AUC) of success plot and precision score (20 pixels threshold) reported on the tested video

sequences in PETS 2016 (AUC/PS). Note every video contains several targets. fps: frames per second.
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Figure 3: Success plot and precison plot on the PETS 2016 dataset of OPE. The number followed by the algorithm name

is the area under the curve (AUC) and the precision score (PS) at the location error threshold of 20 pixels, respectively. Our

method has an overall better performance.

5. Conclusion

This paper presented a robust object tracking method that

naturally addresses the size change, deformation and occlu-

sion problems common in surveillance videos through an

object proposal procedure. The proposal network was built

on the deep convolutional neural network and it enabled ef-

ficient deep feature extraction. It was evaluated on the PETS

2016 dataset and comparisons with recent state-of-the-art

trackers was provided.
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