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Abstract

This paper addresses the problem of uncalibrated photo-
metric stereo with isotropic reflectances. Existing methods
face difficulty in solving for the elevation angles of surface
normals when the light sources only cover the visible hemi-
sphere. Here, we introduce the notion of “constrained half-
vector symmetry” for general isotropic BRDFs and show its
capability of elevation angle recovery. This sort of symme-
try can be observed in a 1D BRDF slice from a subset of
surface normals with the same azimuth angle, and we use it
to devise an efficient modeling and solution method to con-
strain and recover the elevation angles of surface normals
accurately. To enable our method to work in an uncalibrat-
ed manner, we further solve for light sources in the case of
general isotropic BRDFs. By combining this method with
the existing ones for azimuth angle estimation, we can get
state-of-the-art results for uncalibrated photometric stereo
with general isotropic reflectances.

1. Introduction

Photometric stereo is an important research topic for 3D
scene recovery in computer vision. Compared with other
techniques, e.g., multi-view stereo, it is better at handling
the essential physical process by which light is modulated
by the surface. In particular, it can deal with the interac-
tion between the surface normal, illumination, and surface
reflectance simultaneously, and thus, it has much broader
prospects than other methods do and shows a potential to
influence many other fields. For instance, although there are
promising methods for 3D object recognition [5], they are
typically multi view-based and can be further enhanced by
considering the photometric cue. In this paper, we exploit
surface reflectance properties to recover surface normals, e-
specially their elevation angles, in the most challenging case
of unknown light sources and surface reflectances.

The problem is difficult because real-world scenes show
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Figure 1. Elevation angle re-mapping using BRDF symmetry. Pre-
vious methods [17, 10, 3] can solve for the azimuth angles of sur-
face normals accurately, whereas our method provides good es-
timates of the elevation angles. To this end, we propose “con-
strained half-vector symmetry”: BRDF values in the 1D slice
(bottom-right figure) should have a symmetric distribution about
the half vector (red dashed line). This symmetry is observed on a
set of surface normals with varying elevation angles but the same
azimuth angle with a source (bottom-left figure); it helps re-map
the elevation angles (top-left figure) to reduce the final error.

a variety of different surface reflectances, resulting in di-
verse and complex bidirectional reflectance distribution
functions (BRDFs). As a result, most of the previous un-
calibrated (i.e., when light sources are unknown) methods
assume simple surface reflectances, e.g., pure Lambertian
reflectance, or that the diffuse component of the BRDF fol-
lows the Lambertian law. In doing so, the surface normals
can be routinely solved up to the Generalized Bas-Relief
(GBR) ambiguity [2]. The GBR ambiguity can be further
resolved by using various properties observed in real-world
BRDFs, including symmetries [20, 25], diffuse maxima [4]
and pixel color profiles [18]. Since the GBR ambiguity only
has a few spatial-invariant parameters, and it only works for
the Lambertian BRDF, resolving it may not fully exploit the
surface reflectance properties for scene recovery.

Several recent methods are capable of recovering the az-
imuth angles of surface normals without assuming a Lam-
bertian BRDF [17, 10, 3]. However, they still face a chal-
lenge as far as elevation angle recovery goes. Although

1



[17, 10] provide estimates for the elevation angles, they
must assume that the light sources cover the whole sphere u-
niformly or else their accuracies drop significantly. In prac-
tice, real scenes are usually hard to light from the back uni-
formly; it requires a special devise to hold the object with-
out blocking the lighting from the back. Moreover, lighting
from the back always casts shadows that produce outliers.
Therefore, it is expected that the lighting is only in the visi-
ble hemisphere, i.e., the camera-side hemisphere, like most
conventional methods for Lambertian BRDF assume.

In this paper, we propose to leverage reflectance prop-
erties in order to meet this remaining challenge, under the
conditions that the roughly uniform light sources only cover
the visible hemisphere and the reflectance is homogeneous
over the surface. In particular, we define a 1D BRDF slice
based on the surface normals sharing the same azimuth an-
gle with a light source, from which we can observe the con-
strained half-vector symmetry in general isotropic BRDFs.
As shown in Fig. 1, as the elevation angles’ error becomes
smaller, the computed BRDF data in the 1D slice is more
symmetrically distributed on the two sides of the half vector
(red dashed line), which is the bisector of the lighting direc-
tion and viewing direction. This feature constrains the ele-
vation angles and it enables us to devise an efficient method
to solve for them. In addition, our method solves for light
sources, and thus, it can work in an uncalibrated manner.

The contributions of this paper include: 1) a derivation
of constrained half-vector symmetry (Sec 3); 2) an algo-
rithm to determine the elevation angles of surface normals
by using this symmetry (Sec 4); 3) light source estimation
in the case of general isotopic reflectances (Sec 5). In ex-
periments, our methods shows state-of-the-art accuracy for
the challenging problem of uncalibrated photometric stereo
with general isotropic reflectance.

2. Related Works
Whereas conventional photometric stereo methods as-

sume known light directions and Lambertian reflectance
[23], many of the recent studies relax these assumptions.
When the positions of the light sources are unknown, the
surface normals can be solved for up to the GBR ambigui-
ty [2] by assuming Lambertian reflectance. The GBR am-
biguity can be further resolved by using additional scene
properties such as diffuse maxima [4], reflectance symme-
try [20, 25], color profiles [18], and special light source po-
sitions [26]. However, for many general reflectances that do
not obey the Lambertian law, the problem becomes harder,
and known light sources are still needed. Some methods
find and remove non-Lambertian components from obser-
vations by using techniques including median filter [13],
rank-minimization [24] and sparse regression [9], while
other methods obtain the surface geometry directly by lever-
aging various surface reflectance properties [1, 8, 19, 20].
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Figure 2. (a) Standard BRDF parameterization; (b) in a view-
centered coordinate system, we examine the surface normals hav-
ing the same azimuth angle as the light source. We observe the
constrained half-vector symmetry in the resulting 1D BRDF slice.

In these methods, dense light sources with known positions
usually provide crucial cues for obtaining a solution.

There are methods that handle both uncalibrated light
sources and general isotropic reflectances. Some of them
put additional objects with known shapes and reflectances
in the scene as references for calibration [7, 15], and use cer-
tain reflectance models in their formulation [6]. Other meth-
ods include those using light sources placed in a ring [3] or
exploiting the similarity of pixel intensity profiles when the
light sources cover the whole sphere [17, 14, 10]. They
work well in recovering azimuth angles of surface normals,
but face difficulty [17, 14, 10] or require additional input-
s [3] to determine the elevation angles of the surface nor-
mals. In particular, if the light sources only cover the visi-
ble hemisphere on the camera side, the methods described
in [17, 14, 10] produce large errors in the elevation angles of
the surface normals, while the azimuth angles and iso-depth
contours remain accurate. Compared with these methods,
our method accurately solves for the elevation angles with-
out requiring light sources from the back, and it achieves
state-of-the-art results. Note that a recent method developed
by Shi et al. [19] refines the elevation angles, but it requires
the positions of the light sources as input.

3. Contrained Half-Vector Symmetry
In this section, we review the definition and parameter-

izations of BRDFs and some of the important symmetries.
Then, we propose constrained half-vector symmetry, which
can be observed in a 1D BRDF slice, to optimize the solu-
tion of the elevation angles of the surface normals in photo-
metric stereo problems.

3.1. BRDF and Its Parameterization

A BRDF measures the ratio of the reflected radiance
from a surface patch. It is a function f(ωin,ωout) of in-
coming and outgoing light directions in a local coordinate
system. Many recent studies have used halfway/difference
parameterization [16] to represent BRDFs. By introducing
the half vector, which is the bisector of ωin and ωout, a
BRDF can be parameterized as f(θh, φh, θd, φd), as illus-
trated in Fig. 2 (a). Thus, a pixel value captured at a surface



patch can be expressed as

I = f(θh, φh, θd, φd)(n
Ts), (1)

where n is the surface normal and s is the point light source.
The above 4D BRDF parameterization domain can be re-

duced by using some of the symmetries observed in many
real-world materials. For instance, the widely observed
‘isotropy’ reduces the BRDF to a 3D function f(θh, θd, φd)
which is invariant with respect to φh [11]. This is the most
widely adopted assumption in the related research, and n-
early all materials in the MERL BRDF database conform to
it [12]. Moreover, the ‘reciprocity’ and ‘bilateral’ symme-
tries further fold the domain of φd from [0, π] to [0, π/2]. Fi-
nally, by considering the ‘half-vector’ symmetry, which as-
sumes an invariant BRDF against a rotation φd of both ωin
and ωout around the half vector, the BRDF function can be
further reduced to a bivariate one, denoted as f(θh, θd).

3.2. Constrained Half-Vector Symmetry and 1D
BRDF Slice

Let us examine a special case of isotropic reflectance
wherein a set of surface normals {n} with different ele-
vation angles share the same azimuth angle with a light
source s in the view-centered coordinate system, as shown
in Fig. 2 (b). This results in a fixed θd and also φd = 0
or π/21 in the conventional BRDF parameterization with
local coordinates in Fig. 2 (a). Consequently, this simpli-
fies the isotropic BRDF function to either fθd,φd=0(θh) or
fθd,φd=π/2(θh). If one further assumes reciprocity, mean-
ing that the roles ofωin andωout can be interchanged, the t-
wo representations can be unified to be fθd,φd=0(θh), which
represents a 1D slice from the original BRDF, as shown in
Fig. 2 (b). Since fθd,φd=0(θh) is symmetric about the half-
vector (i.e., θh = 0), it leads to the following observation
shown in Fig. 2 (b).

Observation 1. By assuming isotropy and reciprocity, if the
elevation angles of the surface normals and the light source
are correctly measured, the BRDF data computed from the
observations in Fig. 2 (b) should be distributed symmetri-
cally about the half vector.

As explained above, this property is a direct result of as-
suming isotropy and reciprocity. Meanwhile, it can also be
derived from the half-vector symmetry by fixing θd in a bi-
variate BRDF function2. For convenience, we will use the
term “constrained half-vector symmetry” in the rest of this
paper since the concept of the half vector is important.

1ωin and ωout can be rotated by π/2 to interchange their positions,
while still ensuring that n, ωin, and ωout are coplanar.

2In most cases, assuming half-vector symmetry is stronger than as-
suming isotropy and reciprocity. Therefore, our symmetry is in fact fit for
more general reflectances than conventional half-vector symmetry.

4. Elevation Angle Re-mapping
In this section, we describe the recovery of surface nor-

mals of test scenes. In particular, we propose an accurate el-
evation angle recovery by using the constrained half-vector
symmetry. Note that we will use known light positions to
describe the method. However, this assumption will be dis-
carded in Sec 5.

4.1. Symmetric Data Acquisition from Images

Scene images are captured by a fixed camera with rough-
ly uniform light sources in the visible hemisphere. We em-
ploy the previously proposed method [17] for obtaining the
initial estimates of the surface normals from these images.
Pixel profiles are obtained in order to measure the surface
normals’ similarities. Then the surface normals are recov-
ered from these similarity measurements. Because the light
sources are only in the visible hemisphere, the measure-
ments are asymmetric along the viewing direction. Prelimi-
nary experiments indicate the average error of the elevation
angle is more than twice that of the azimuth angle.

We use the initialized surface normals to extract symmet-
ric pairs from 1D BRDF slices for estimating the elevation
angles. For simplicity, let us describe this procedure for a
given light source s. We will do the same for each of the
other light sources. In the view-centered coordinate system,
we find a set of captured pixels whose corresponding sur-
face normals {nj} share the same azimuth angle with s. In
practice, a threshold of the azimuth angle difference can be
used, e.g., 1◦, to ensure that the number of selected {nj}
is larger than 10. Then, each pixel value is converted into
a BRDF value by dividing it by nj · s, using Eq. (1). Fi-
nally, we obtain a 1D slice ρ containing all BRDF values
observed at {nj}.

The next step is to extract symmetric pairs. Given the
viewing direction [0, 0,−1]T and the light source s, we first
compute the half vector as their bisector and record its ele-
vation angle as h. We also find the surface normal in {nj}
corresponding to the largest BRDF value in ρ and record
its elevation angle as δ. It is reasonable to assume that the
largest BRDF is observed at h, and thus, δ should be close
to h. Then, we extract the elevation angles of {nj} in a pair-
wise manner that satisfy constrained half-vector symmetry.
We traverse all elements of ρ, and for each of them, indexed
by the elevation angle αj , we find in ρ another element βj

such that 1) αj and βj correspond to the same BRDF val-
ue; 2) αj and βj are located on two sides of δ. Note that
αj , βj and δ are the initial elevation angles or their current
estimates during the iteration (see Sec 4.3).

In practice, βj does not usually have exactly the same
BRDF value as αj . Therefore, instead of finding the exact
βj , we find two elevation angles βj and γj , whose BRDF
values are closest to that of αj . By assuming the BRDF val-
ues change smoothly, we can compute the weights µj and
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Figure 3. (a) For each αj , we find its symmetric partner in the 1D
slice by using interpolation; (b) smoothness level in Eq. (4).

νj such that ρ(αj) = µjρ(βj) + νjρ(γj) and use them to
produce the symmetry partner of αj with µjβj + νjγj . As
a result, (αj , µjβj + νjγj) is considered to be a symmetric
pair. This situation is illustrated in Fig. 3 (a).

Ideally, the data collected on the light source s should
satisfy constrained half-vector symmetry in the following
ways: 1) δ = h and 2) αj+(µjβj+νjγj)

2 = h, which means
h should be the bisector of the elevation angles of any sym-
metric pair, as shown in Fig. 3 (a). On the other hand, these
data are computed from inaccurate estimates of the eleva-
tion angles and thus may break the symmetry, as shown in
Fig. 1. Therefore, we can use symmetry as a criterion to
correct the elevation angles of the surface normals.

4.2. Formulation with 1D BRDF Slices

By using the symmetric data described in the previous
section, we propose to refine the elevation angles of the
surface normals so that they satisfy constrained half-vector
symmetry for all 1D BRDF slices. We model the refine-
ment as an elevation angle re-mapping process. By assum-
ing a global mapping and correct azimuth angles, which are
supported by results from [17, 10], we establish a one-to-
one mapping ε 7→ ε̂ : ε̂ = m(ε) with boundary conditions
m(0) = 0 and m(π/2) = π/2 to refine any elevation angle
ε. The mapping can be simple or highly non-linear, depend-
ing on the accuracy of the initial elevation angles.

We formulate the problem by using constraints de-
rived from the constrained half-vector symmetry. In par-
ticular, for the ith light source si, the collected ele-
vation angle pairs should satisfy 1) m(δi) = hi and

2) m(αj
i )+[µj

im(βj
i )+ν

j
im(γj

i )]

2 = hi after the re-mapping,
where the subscript i indicates data from a 1D BRDF slice
lit by a source si. This directly leads to the formulation,

Edata(m(·)) =
∑
i

[
κ [m(δi)− hi]2︸ ︷︷ ︸

align extreme to hi

+

∑
j

[
m(αji ) + [µjim(βji ) + νjim(γji )]− 2hi

]2
︸ ︷︷ ︸

make every elevation angle pair symmetric about hi

]
, (2)

where κ balances the influence of different terms. In prac-
tice, we use κ = 10, due to the importance of information
directly from the half vector. Note that Eq. (2) uses an out-
er summation to take into account equations from all light
sources {si}.

In addition, a smoothness term can be added to Eq. (2) to
suppress the influence of outliers. To this end, we force the
mapping curve to change gradually by minimizing the sum
of the squares of the second derivative of m(·) as

Esmooth(m(·)) =
90−1∑
k=0+1

λ(k) [m′′(k)]
2
, (3)

where k represents sampling angles to define m(·) in a
discrete form (see the x-axis values in the top-left plot of
Fig. 1), and λ(k) determines the level of elevation-angle-
dependent smoothness. In this discrete formulation, we use
m′′(k) = m(k−1)−2m(k)+m(k+1) to compute the sec-
ond derivative. Note that, here, m(·) is defined at elevation
angles from 0◦ to 90◦ in steps of 1◦, while a formulation
with a higher sampling density is straightforward.

The balance weight λ(·) is specially designed to be

λ(k) =

{
c× (2× cos(4k) + 3), k < 45
c , otherwise , (4)

where c is a constant value (= 100 in our experiments). The
curve of the smoothness level is in Fig. 3 (b). By using this
spatially varying smoothness, small elevation angles (which
tend to suffer from noise because their surface points are
always dark without lighting from the back) are smoothed
out to avoid effects due to the low signal-noise-ratio.

The final formulation of the problem takes into consid-
eration both terms as follows:

m(·) = argmin
m(·)

(Edata + Esmooth),

s.t. m(0) = 0,m(π/2) = π/2,

m([0, π/2]) ⊆ [0, π/2]. (5)

4.3. Solution and Uniqueness

We solve the unknown mapping function m(·) through
matrix calculations. Under the condition that the elevation
angles are sampled from 0◦ to 90◦ in steps of 1◦, we can
re-definem(·) as a 1D vector m ∈ R91×1, while its kth ele-
ment equals m(k) which is the mapping result for elevation
angle k. Accordingly, m numerically defines a mapping of
elevation angles, which allows us to re-write Eq. (5) as

m = argmin
m

‖Am− b‖2 s.t. m ≥ 0, (6)



where the matricesA andB are constructed as follows:
column: [βj

i ] [αj
i ] [δi] [γj

i ]

A =


...

... ...
... ...

... ...
... ...

... ... ... 2·κ ... ...

... µj
i ... 1 ... ... ... νj

i ...

...
... ...

... λ(k) −2·λ(k) λ(k)
... ...

...
...

...
. . .

...
Inf 0

0 Inf


,b =



...
2·hi

2·hi

...
0
...
0

90·Inf


,

(7)
where [βji ] takes the rounded value of βji and indicates the
column index. Note that the same row from the matrix A
and vector b exactly constitute a sub-formula in either E-
q. (2) or Eq. (3), except for the last two rows representing
the boundary conditions for 0 and π/2, where ‘Inf’ indicates
a constant large value (= 105 in our experiments). There-
fore, the solution of Eq. (6) numerically approximates the
solution of Eq. (5). The solution can be obtained by using
least squares solvers with non-negative constraints.
Iteration In Sec 4.1, we compute the BRDF values by using
the initial elevation angles, and thus, those values are inac-
curate. After the elevation angles are updated using our so-
lution, we re-compute the BRDF values and solve for the el-
evation angles again. Note that we do not update the choice
of {nj} since the azimuth angles are assumed correct. In
practice, 3 iterations suffice to get a final solution.
Solution uniqueness It is important to know whether the
solution to Eq. (6) is unique or not in order to determine the
surface normals. For this, we can prove that

Proposition 1. Without considering the smoothness term,
the problem in Eq. (5) (Eq. (6)) has a unique solution un-
der the following conditions: 1) the surface reflectance is
not Lambertian; 2) there are at least two light sources with
different elevation angles.

We prove the second condition in the Appendix and give
an intuitive explanation of it here. Let us suppose that all
light sources have the same elevation angle, which produces
the same half vector. Our symmetry cannot determine the
elevation angles of the surface normals with only one half
vector, because the distribution of elevation angles on one
side of the half vector can be freely changed, and the other
side can be symmetrically changed after that. Only another
half vector can remove this additional degree of freedom.

As for the first condition, it is obvious because Lamber-
tian reflectance has an identical BRDF value everywhere,
which makes it too ambiguous to use to measure the sym-
metry. Many diffuse materials like latex and rubber cause
this problem, which make the output of our method unsta-
ble and non-convergent during the iteration. Meanwhile, we
can easily identify such materials by checking the conver-
gence of the output; we can simply keep the original results
produced by methods like [17], since Lambertian-like ma-
terials are easy for the conventional methods to handle.
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Figure 4. Recovered 3D light source positions in the visible hemi-
sphere. (a) and (b): results using raw pixel profiles as in [21]; (c):
results of our method.

5. Robust Light Source Estimation
The previous sections use light sources to compute the

half vectors. If they are not given beforehand, we have to
estimate them from the input images. By assuming that the
light sources cover the visible hemisphere, Winnemöller et
al. [22] show that 3D light source positions can be recov-
ered by using similarities among images taken under differ-
ent lighting conditions. In particular, a pixel profile can be
constructed so as to comprise all pixels in the same image
with a fixed order (e.g., raster scan). Let us denote a profile
consisting of pixel intensities {Ipi } from the image captured
under the ith light source as χi = [I1i , · · · , I

p
i , · · · ]T. As

demonstrated in [22], by varying the light source position
moderately, the differences among {χi} can be strongly
correlated to the differences in the light sources position-
s. Following this observation, one can apply dimensionality
reduction (e.g., ISOMAP [21]) to embed all pixel intensi-
ty profiles {χi} into 3D space and map them to the visible
hemisphere to recover the unknown light sources.

We use this procedure to estimate light sources solely
from images taken under different lighting conditions; our
technique includes two major extensions to that of [22]:

(1) [22] works well for simple Lambertian reflectance but
not for glossy or specular ones, while our method
works for general isotropic reflectances.

(2) We resolve their remaining rotation/flip ambiguity by
aligning the light sources to the surface normals.

General Reflectances An example of light sources recov-
ered by [22] is shown in Fig. 4 (a), where the captured
surface has Lambertian reflectance. However, as shown in
Fig. 4 (b), in the case of general isotropic reflectances, e.g.,
specular ones, light source positions cannot be correctly re-
covered by using raw pixel intensity profiles {χi}. This is
because the pixel values of specular materials change great-
ly in a highly nonlinear manner and thus they cannot be used
to measure differences between images.

To overcome this problem, note that although differen-
t materials produce very different pixel values, the loca-
tions of the bright and dark regions simply convey light



source positions, as in the case of the two “dragon” sur-
faces in Fig. 4. Therefore, we propose to modify the pix-
el intensity profiles so that they can handle more gener-
al isotropic reflectances. In particular, we replace χi =
[I1i , · · · , I

p
i , · · · ]T with χ̂i = [o(I1i ), · · · , o(I

p
i ), · · · ]T,

where o(Ip) is the ascending order of Ip of all pixel values
in χi. By using {χ̂i}, we can recover accurate light source
positions as shown in Fig. 4 (c) even with highly specular
materials. An explanation of the dimensionality reduction
using ISOMAP can be found in [21, 22].
Rotation/Flip Ambiguity The solution is invariant against
rotations/flips of all light sources around/about the viewing
direction, as shown in Fig. 4 (a). Winnemöller et al. [22]
leave this ambiguity for the user to deal with manually,
whereas we propose an automatic method that aligns the
light sources to the recovered surface normals.

We first model the rotation and flip ambiguity as

Q =

η · cosφv −η · sinφv 0
sin θv cos θv 0
0 0 1

 , (8)

where θv controls the rotation around the viewing direction,
and η = ±1 flips the axis. The ground truth solution can be
expressed asQsi, assuming the current solution is si.

A simple observation enables us to solveQ. That is, any
light source si always shares the same azimuth angle with
the surface normal ñi, which corresponds to the brightest
pixel Ĩi that si can produce. Thus,

Q = argmin
Q

∑
i

[
Ĩi · arccos

c2,1(Qsi)
T · c2,1(ñi)

|c2,1(Qsi)| · |c2,1(ñi)|

]
,

(9)
where c2,1(·) keeps the first two rows and one column of the
input vector, and the pixel value Ĩi balances the influence of
the current term since bright pixels are reliable. Eq. (9) can
easily be solved since the only unknown is the angle θv and
η = ±1. In this way,Q yields correct light sources {Qsi}.

6. Experimental Evaluation

6.1. Synthetic Datasets

Figure 5. Positions of light
sources in the hemisphere.

We quantitatively evalu-
ate our method by using syn-
thetic scenes. To render the
scenes, we use 100 different
BRDFs in the MERL BRD-
F database [12] with vary-
ing lighting positions. Un-
like in [17, 10], where the
lighting positions cover the
whole sphere, ours only cov-
er the visible hemisphere.

Table 1. Average normal/light errors of 100 materials. Our method
automatically recognizes and skips Lambertian-like materials.

Materials Initial err. Final err. Light err.
Processed (81) 18.66◦ 6.21◦ 7.41◦

Skipped (19) 4.76◦ 4.76◦ 7.50◦

Average (100) 15.98◦ 5.89◦ 7.43◦

Skipped (Lambertian-like)Processed

Figure 6. Examples of automatic material type classification.

All 82 light source positions are illustrated in Fig. 5. For
each source, we produce scene images using 1) a standard
hemispherical surface and 2) several 3D models, e.g., Bun-
ny, Armadillo, Rabbit, and Happy Buddha. These images
are used as inputs to our method. To initialize the surface
normals, we use the method in [17].
Accuracy for All 100 Materials First, we test our method
using hemispherical surfaces. Table 1 shows the average
results for all 100 materials. The error is 5.89◦ for surface
normal recovery, which is pretty accurate considering that
both the materials and the light sources are unknown. More-
over, our method “skips” 19 Lambertian-like materials in
Table 1; i.e., their initial surface normals are already accu-
rate (4.76◦ in average) and are not updated as described in
Sec 4.3. For the other materials, our method significantly
increases the average accuracy, from 18.66◦ to 6.21◦. The
big difference in accuracy indicates the effectiveness of our
method. The results for light source recovery are insensitive
to the type of material and have an average error of 7.43◦.

Note that the decision whether or not to skip a material
is automatically determined via optimization as described
at the end of Sec 4.3. To verify that the procedure is cor-
rect, we show examples of processed and skipped materials
in Fig. 6. These examples, together with the accuracies in
Table 1, prove the validity of our analysis in Sec 4.3.

In addition, we plot the errors for each material (Fig. 7)
and show some representative examples of elevation an-
gle mappings and recovered 1D symmetries. In particular,
material A corresponds to a Lambertian-like material with-
out obvious 1D half-vector symmetry, and thus our method
does not update its results; materials B and C are processed
correctly and their recovered 1D BRDF symmetries can be
seen; material D has the worst accuracy due to its addition-
al lobe that breaks our half-vector-based symmetry. Fig. 7
also compares the obtained elevation angle mapping curves
of these four materials (blue) with the optimal curves (red).
Comparison with Other Methods We compare our result-
s with those of previous methods. Experiments using the
100 hemispherical surfaces are conducted on the methods
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Figure 7. Detailed results for 100 materials. Computed elevation angle mapping curves (blue line: estimated; red line: ground truth) and
recovered symmetry data (red dashed line for half vector) for four representative materials.

Table 2. Accuracies of ours and other uncalibrated methods.

Ours
Lu et al.

[10]
Sato et al.

[17]
Wu et al.

[24]
Normal err. 5.89◦ 14.95◦ 15.99◦ 20.00◦

Light err. 7.43◦ – – –
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Figure 8. Detailed comparison (large errors are cut at 50◦).

of Lu et al. [10], Sato et al. [17] and Wu et al. [24]. Note
that although we test “uncalibrated” methods, we provide
the method in [24] with ground truth light sources to help it
resolve the GBR ambiguity for some difficult materials.

Average results are listed in Table 2. Our method is sig-
nificantly more accurate than the other methods. Note that
although Lu et al. [10] and Sato et al. [17] report good ac-
curacies when assuming uniform light sources on the w-
hole sphere, their errors increase significantly with only
light sources on the visible hemisphere. Also note that our
method is the only one that can recover the light sources.
Per-material errors are plotted in Fig. 8 for reference.
Results for Complex 3D Models We test our method by us-
ing 3D models. Their images are rendered by using ten typ-
ical materials in the MERL database under the light sources
in Fig. 5. Examples of the rendered images and the recovery
results are shown in Fig. 9, where we visually compare the

Table 3. Results for 3D synthetic models made with 10 materials.
Bunny Armadillo Rabbit Happy Buddha Average

Ours 6.2◦ 6.0◦ 7.6◦ 6.3◦ 6.5◦

[10] 12.2◦ 13.0◦ 12.8◦ 11.9◦ 12.5◦

[17] 15.3◦ 16.0◦ 16.8◦ 15.5◦ 15.9◦

error maps produced by our method and by [10]. As expect-
ed, the errors from [10] are basically in the elevation angles,
while our method can greatly improve on their accuracy and
eventually achieves good estimates of the surface geometry.
Exact numbers of recovery errors are compared with those
of [10] and [17] in Table 3 (We do not include the results for
the method in [24] since it fails to give reasonable outputs
for some of the test materials.).

6.2. Real Scenes

Here, we show some qualitative results for real-world
objects. The images are captured with light sources only on
the visible hemisphere. There are typically 60 such sources.
The recovered surface normal maps for different objects are
shown in Fig. 10, together with the depth maps reconstruct-
ed from these surface normal maps. The correctness of the
object shapes can be checked from the depth maps. Al-
though these objects have various surface reflectances, our
method still gives good estimates of their geometry.

7. Conclusion
We propose constrained half-vector symmetry, which is

the fact that the observed BRDF values in a 1D slice have a
symmetric distribution about the half vector. By using such
symmetric data, we develop an efficient and accurate mod-
eling and solution method for elevation angle recovery. Our
method also recovers light sources in the case of general
isotropic BRDFs, and this helps in the elevation angle esti-
mation. By combining our method with existing techniques
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Figure 10. Exemplary results of surface normal maps and depth maps recovered from real-world images by using our method.
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Figure 9. Representative results for synthetic 3D surfaces. Four
out of the ten test materials are shown in the first row.

for estimating the azimuth angles, we obtain satisfactory so-
lutions for the challenging problem of uncalibrated photo-
metric stereo with general isotropic reflectances.

Appendix A: Prove of Proposition 1

Proof. Without assuming the smoothness term and boundary con-
ditions, we first consider the case with only one light source. The
matrix A in Eq. (6) is composed of 1) one row of [· · · , 2κ, · · · ]
and 2) multiple rows of [· · · , µj

i , · · · , 1, · · · , ν
j
i , · · · ], and the

vector b contains a unique half vector value. In Sec 4.1, weights
of µj

i and νji are used only when the surface point with the exac-
t elevation angle is not captured. In the ideal case where we can
capture data at every sampling position of elevation angle, the rows
become [· · · , 1, · · · , 1, · · · ] due to the existence of any symmet-
ric pairs. Because there is only one light source, every symmetric
pair is unique, and has no overlap with any other pair. Therefore,
the maximum number of unique rows (pairs) is (N − 1)/2 + 1,
where N is the number of elements in m, which is 91 in Sec 4.2
and Sec 4.3, but can be made much larger for better accuracy.

This shows that a system with only one light source has at most
(N−1)/2+1 independent equations butN unknowns, and thus it
is underdetermined and has multiple solutions. Now let us go back
to the non-ideal case, where the data at a certain sampling position
of elevation angle is not captured in practice; here, the correspond-
ing row becomes [· · · , µj

i , · · · , 1, · · · , ν
j
i , · · · ]. However, as de-

scribed in Sec. 4.1, it approximates the ideal case numerically and
does not increase the number of effective functions.

Furthermore, let us consider multiple light sources. If an ad-
ditional light source exists but has the same elevation angle as the
first one, its half vector will also be the same as the first one and
thus their resulting symmetric BRDF pairs will be unique. There-
fore, the two light sources at most produce the same (N−1)/2+1
equations and the problem is still underdetermined. Only if the
second light source has a different elevation angle, it can produce
at most another (N − 1)/2+ 1 independent equations, so that the
system can be determined.
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