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Abstract

Locality-sensitive hashing (LSH) is a popular data-

independent indexing method for approximate similarity

search, where random projections followed by quantization

hash the points from the database so as to ensure that the

probability of collision is much higher for objects that are

close to each other than for those that are far apart. Most

of high-dimensional visual descriptors for images exhibit a

natural matrix structure. When visual descriptors are repre-

sented by high-dimensional feature vectors and long binary

codes are assigned, a random projection matrix requires ex-

pensive complexities in both space and time. In this pa-

per we analyze a bilinear random projection method where

feature matrices are transformed to binary codes by two

smaller random projection matrices. We base our theoret-

ical analysis on extending Raginsky and Lazebnik’s result

where random Fourier features are composed with random

binary quantizers to form locality sensitive binary codes.

To this end, we answer the following two questions: (1)

whether a bilinear random projection also yields similarity-

preserving binary codes; (2) whether a bilinear random

projection yields performance gain or loss, compared to

a large linear projection. Regarding the first question, we

present upper and lower bounds on the expected Hamming

distance between binary codes produced by bilinear ran-

dom projections. In regards to the second question, we an-

alyze the upper and lower bounds on covariance between

two bits of binary codes, showing that the correlation be-

tween two bits is small. Numerical experiments on MNIST

and Flickr45K datasets confirm the validity of our method.

1. Introduction

Nearest neighbor search, the goal of which is to find

most relevant items to a query given a pre-defined distance

metric, is a core problem in various applications such as

classification [14], object matching [9], retrieval [10], and

so on. A naive solution to nearest neighbor search is lin-
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Figure 1. Two exemplary visual descriptors, which have a natural

matrix structure, are often converted to long vectors. The above il-

lustration describes LLC [15], where spatial information of initial

descriptors is summarized into a final concatenated feature with

spatial pyramid structure. The bottom shows VLAD [7], where

the residual between initial descriptors and their nearest visual vo-

cabulary (marked as a triangle) is encoded in a matrix form.

ear scan where all items in database are sorted according

to their similarity to the query, in order to find relevant

items, requiring linear complexity. In practical applications,

however, linear scan is not scalable due to the size of ex-

amples in database. Approximate nearest neighbor search,

which trades accuracy for scalability, becomes more impor-

tant than ever. Earlier work [4, 1] is a tree-based approach

that exploits spatial partitions of data space via various tree

structures to speed up search. While tree-based methods

are successful for low-dimensional data, their performance

is not satisfactory for high-dimensional data and does not

guarantee faster search compared to linear scan [5].

For high-dimensional data, a promising approach is

approximate similarity search via hashing. Locality-

sensitive hashing (LSH) is a notable data-independent hash-

ing method, where randomly generates binary codes such

that two similar items in database are hashed to have high

probability of collision [5, 2, 11]. Different similarity

metric leads to various LSH, including angle preservation

[2], ℓp norm (p ∈ (0, 2]) [3], and shift-invariant kernels

[11]. Since LSH is a pure data-independent approach, it
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needs multiple hash tables or long code, requiring high

memory footprint. To remedy high memory consumption,

data-dependent hashing [13, 17, 16] has been introduced

to learn similarity-preserving binary codes from data such

that embedding into a binary space preserves similarity be-

tween data points in the original space. In general, data-

dependent hashing generates compact binary codes, com-

pared to LSH. However, LSH still works well, compared to

data-dependent hashing methods for a very large code size.

Most of existing hashing algorithms does not take into

account a natural matrix structure frequently observed in

image descriptors [7, 15], as shown in Fig. 1. When a ma-

trix descriptor is re-organized as a high-dimensional vec-

tor, most of hashing methods suffer from high storage and

time complexity due to a single large projection matrix.

Given a d-dimensional vector, the space and time complex-

ities to generate a code of size k are both O(dk). In the

case of 100, 000-dimensional data, 40GB1 is required to

store a projection matrix to generate a binary code of length

100, 000, which is not desirable in constructing a large-scale

vision system.

Bilinear projection, which consists of left and right pro-

jections, is a promising approach to handling data with

a matrix structure. It has been successfully applied to

two-dimensional principal component analysis (2D-PCA)

[18] and 2D canonical correlation analysis (2D-CCA)[8],

demonstrating that the time and space complexities are re-

duced while retaining performance, compared to a single

large projection method. Recently, bilinear projections are

adopted to the angle-preserving LSH [6], where the space

and time complexities are O(
√
dk) and O(d

√
k), to gener-

ate binary codes of size k for a
√
d by

√
d matrix data. Note

that when such matrix data is re-organized as d-dimensional

vector, the space and time complexities for LSH are both

O(dk). While promising results for hashing with bilinear

projection are reported in [6], its theoretical analysis is not

available yet.

In this paper we present a bilinear extension of LSH from

shift-invariant kernels (LSH-SIK) [11] and attempt to the

following two questions on whether:

• randomized bilinear projections also yield similarity-

preserving binary codes;

• there is performance gain or loss when randomized bi-

linear projections are adopted instead of a large single

linear projection.

Our analysis shows that LSH-SIK with bilinear projections

generates similarity-preserving binary codes and that the

performance is not much degraded compared to LSH-SIK

with a large single linear projection.

1If we use single precision to represent a floating-point, the projection

matrix needs 100, 000× 100, 000× 4 bytes ≈ 40GB.

2. Related Work

In this section we briefly review LSH algorithms for pre-

serving angle [2] or shift-invariant kernels [11]. We also

review an existing bilinear hashing method [6].

2.1. LSH: Angle Preservation

Given a vector x in R
d, a hash function ha(x) returns

a value 1 or 0, i.e., ha(·) : Rd 7→ {0, 1}. We assume that

data vectors are centered, i.e.,
∑N

i=1
xi = 0, where N is

the number of samples. The random hyperplane-based hash

function involves a random projection followed by a binary

quantization, taking the form:

ha(x) ,
1

2

{

1 + sgn
(

w⊤x
)

}

, (1)

where w ∈ R
d is a random vector sampled on a unit d-

sphere and sgn(·) is the sign function which returns 1 when-

ever the input is nonnegative and 0 otherwise. It was shown

in [2] that the random hyperplane method naturally gives a

family of hash functions for vectors in R
d such that

P

[

ha(x) = ha(y)
]

= 1− θx,y

π
, (2)

where θx,y denotes the angle between two vectors x and

y. This technique, referred to as LSH-angle, works well for

preserving an angle, but it does not preserve other types of

similarities defined by a kernel between two vectors.

2.2. LSH: ShiftInvariant Kernels

Locality-sensitive hashing from shift-invariant kernels

[11], referred to as LSH-SIK, is a random projection-based

encoding scheme, such that the expected Hamming distance

between the binary codes of two vectors is related to the

value of shift-invariant kernel between two vectors. Ran-

dom Fourier feature (RFF) is defined by

φw(x) ,
√
2 cos(w⊤x+ b), (3)

where w is drawn from a distribution corresponding to

an underlying shift-invariant kernel, i.e., w ∼ pκ, b is

drawn from a uniform distribution over [0, 2π], i.e., b ∼
Unif[0, 2π]. If the kernel κ is properly scaled, Bochner’s

theorem guarantees Ew,b

[

φw(x)φw(y)
]

= κ(x−y), where

E is the statistical expectation and κ(·) represents a shift-

invariant kernel [12].

LSH-SIK builds a hash function, h(·) : Rd 7→ {0, 1},

composing RFFs with a random binary quantization

h(x) ,
1

2

{

1 + sgn

(

1√
2
φw(x) + t

)}

, (4)

where t ∼ Unif[−1, 1]. The most appealing property

of LSH-SIK provides upper- and lower-bounds on the

expected Hamming distance between any two embedded

points, which is summarized in Theorem 1.



Theorem 1. [11] Define the functions

g1(ζ) ,
4

π2
(1− ζ)

g2(ζ) , min

{

1

2

√

1− ζ,
4

π2

(

1− 2

3
ζ

)}

,

where ζ ∈ [0, 1], and g1(0) = g2(0) = 4

π2 , g1(1) =
g2(1) = 0. Mercer kernel κ is shift-invariant, normalized,

and satisfies κ(αx−αy) ≤ κ(x− y) for any α ≥ 1. Then

the expected Hamming distance between any two embedded

points satisfies

g1(κ(x− y)) ≤ E

[

I [h(x) 6= h(y)]
]

≤ g2(κ(x− y)), (5)

where I[·] is the indicator function which equals 1 if its ar-

gument is true and 0 otherwise.

The bounds in Theorem 1 indicate that binary codes de-

termined by LSH-SIK well preserve the similarity defined

by the underlying shift-invariant kernel.

2.3. Hashing with Bilinear Projections

Most of high-dimensional descriptors for image, includ-

ing HOG, Fisher Vector (FV), and VLAD, exhibit a natu-

ral matrix structure. Suppose that X ∈ R
dw×dv is a de-

scriptor matrix. The matrix is reorganized into a vector

x = vec(X) ∈ R
d where d = dwdv , and then a binary

code of size k is determined by k independent use of the

hash function (4). This scheme requires O(dk) in space

and time.

A bilinear projection-based method [6] constructs a hash

function Ha(·) : Rdw×dv 7→ {0, 1}kwkv that is of the form

Ha(X) ,
1

2

{

1 + sgn
(

vec
(

W⊤XV
))}

, (6)

where W ∈ R
dw×kw and V ∈ R

dv×kv , to produce a binary

code of size k = kwkv . This scheme reduces space and

time complexity to O(dwkw+dvkv) and O(d2wkw+d2vkv),
respectively, while a single large linear projection requires

O(dwdvkwkv) in space and time.2 Empirical results in [6]

indicate that a random bilinear projection produces com-

parable performance compared to a single large projection.

However, its theoretical behavior is not fully investigated.

In the next section, we consider a bilinear extension of LSH-

SIK (4) and present our theoretical analysis.

2Recently, [19] proposes a circulant embedding, which is implemented

by discrete Fourier transform, to reduce the space and time complexities

to O(d) and O(d log d) when (d = dw × dv) and the code length is d.

Even though the circulant embedding is faster than bilinear projections, we

believe that it is worth analyzing hashing with bilinear projections, because

the implementation is simpler than [19].

3. Analysis of Bilinear Random Projections

In this section we present the main contribution that is

an theoretical analysis of a bilinear extension of LSH-SIK.

To this end, we consider a hash function h(·) : Rdw×dv 7→
{0, 1} that is of the form

h(X) ,
1

2

{

1 + sgn
(

cos
(

w⊤Xv + b
)

+ t
)}

, (7)

where w,v ∼ N (0, I), b ∼ Unif[0, 2π], and t ∼
Unif[−1, 1]. With the abuse of notation, we use h(·) for

the case of randomized bilinear hashing, however, it can be

distinguished from (4), depending on its input argument x

or X . To produce binary code of size k = kwkv , the hash

function H(·) : Rdw×dv 7→ {0, 1}k takes the form:

H(X) ,
1

2

{

1 + sgn
(

cos
(

vec(W⊤XV ) + b
)

+ t
)}

, (8)

where each column of W or of V is independently drawn

from spherical Gaussian with zero mean and unit variance,

each entry of b ∈ R
k or of t ∈ R

k is drawn uniformly from

[0, 2π] and [−1, 1], respectively.

We attempt to answer two questions on whether: (1) bi-

linear random projections also yield similarity-preserving

binary codes like the original LSH-SIK; (2) there is perfor-

mance gain or degradation when bilinear random projec-

tions are adopted instead of a large linear projection.

To answer the first question, we compute the up-

per and lower bound on the expected Hamming distance

E

[

I
[

h(X) 6= h(Y )
]

]

between any two embedded points

computed by bilinear LSH-SIK with Gaussian kernel.

Compared to the the original upper and lower bounds for

LSH-SIK [11] with a single linear projection (Theorem 1),

our upper bound is the same and lower bound is slightly

worse when the underlying kernel is Gaussian.

Regarding the second question, note that some of bits

of binary codes computed by the hash function (8) share

either left or right projection (column vector of W or V ),

leading to correlations between two bits. We show that the

covariance between two bits is not high by analyzing the

upper and lower bounds on covariance between the two bits.

3.1. Random Fourier Features

We begin with investigating the properties of random

Fourier features [12] in the case of bilinear projections,

since BLSH-SIK (an abbreviation of bilinear LSH-SIK)

bases its theoretical analysis on these properties. To this

end, we consider bilinear RFF:

φw,v(X) ,
√
2 cos(w⊤Xv + b), (9)

where w,v ∼ N (0, I) and b ∼ Unif[0, 2π].
In the case of randomized linear map where w ∼

N (0, I), E[φw(x)φw(y)] = κg(x − y), where κg(·) is



Gaussian kernel. Unfortunately, for the randomized bilin-

ear map, E
[

φw,v(X)φw,v(Y )
]

6= κg

(

vec(X−Y )
)

, where

Gaussian kernel defined as

κg

(

vec(X − Y )
)

, exp

{

−1

2
‖vec(X − Y )‖2

2

}

= exp

{

−1

2
tr
[

(X − Y )(X − Y )⊤
]

}

,

where X,Y ∈ R
dw×dv and the scaling parameter of

Gaussian kernel is set as 1. However, we show that

E
[

φw,v(X)φw,v(Y )
]

is between κg

(

vec(X − Y )
)

and

κg

(

vec(X−Y )
)0.79

, which is summarized in the following

lemma.

Lemma 1. Define ∆ = (X − Y )(X − Y )⊤. Denote by

{λj} leading eigenvalues of ∆. The inner product between

RFFs is given by

Ew,v,b

[

φw,v(X)φw,v(Y )
]

=
∏

j

(1 + λj)
− 1

2

, κb(X − Y ). (10)

Then, κb(X − Y ) is upper and lower bounded in terms of
Gaussian kernel κg(vec(X − Y )):

κg

(

vec(X − Y )
)

≤ κb

(

X − Y
)

≤ κg

(

vec(X − Y )
)

0.79
,

provided that the following assumptions are satisfied:

• ||X||F ≤ 0.8, which can be easily satisfied by re-

scaling the data.

• λ1 ≤ 0.28
∑dw

i=2
λi, which can be easily satisfied for

large dw.

Proof.

Ew,v,b

[

φw,v(X)φw,v(Y )
]

=

∫ ∫

cos
(

w⊤(X − Y )v
)

p(w)p(v) dwdv

=

∫

κg

(

(X − Y )⊤w
)

p(w) dw

= (2π)−
dw

2

∫

exp

{

−w⊤(I +∆)w

2

}

dw

=
∣

∣I +∆
∣

∣

− 1

2 ,

where | · | denotes the determinant of a matrix. The eigen-

decomposition of ∆ is given by ∆ = UΛU⊤, where U and

Λ are eigenvector and eigenvalue matrices, respectively.

Then we have

∣

∣I +∆
∣

∣

− 1

2 =
∣

∣U(I +Λ)U⊤∣
∣

− 1

2

=
∏

j

(1 + λj)
− 1

2 .

Now we prove the following inequalities:

κg(vec(X − Y )) ≤ κb(X − Y ) ≤ κg(vec(X − Y ))0.79.

Lower bound: First, we can easily show the lower bound

on κb(X −Y ) with the following inequality: κg(vec(X −
Y )) =

∏

j exp(λj)
− 1

2 ≤ ∏

j(1 + λj)
− 1

2 , κb(X − Y ),
because 1 + λj ≤ exp(λj).
Upper bound: Second, assuming that ||X||F ≤ 0.8, we can
derive the upper bound on κb(X−Y ). Now, we can bound
λj with the following logic.

tr
[

(X − Y )(X − Y )⊤
]

≤ (2 ∗ 0.8)2 = 2.56

⇒
∑

k

λk ≤ 2.56

⇒ λ1 ≤ 0.56 (∵ λk ≥ 0, λ1 ≤ 0.28

dw
∑

i=2

λi).

For 0 ≤ λj ≤ 0.56, we know that exp(λj)
0.79 ≤ 1 + λj ,

leading to the upper bound on κb(X − Y ), i.e., κb(X −
Y ) ≤ κg(vec(X − Y ))0.79.

Lemma 1 indicates that random Fourier features with bi-

linear projections are related to the one with single projec-

tion in case of Gaussian kernel. Due to this relation, we can

conclude that random Fourier features with bilinear projec-

tions can generate similarity-preserving binary codes in the

following section. Finally, we summarize some important

properties of κb(X − Y ), showing that κb(X − Y ) shares

the similar properties with κg(X − Y ):

• Property 1: 0 ≤ κb(X − Y ) ≤ 1.

• Property 2: κb(mX − mY ) ≤ κb(X − Y ),
where m is a positive integer.

Fig. 2 demonstrates that the inner product of two data

points induced by bilinear RFF is upper and lower bounded

with respect to Gaussian kernel as shown in Lemma 1. For

the high dw, the upper bound is satisfied in Fig. 2 (c-d),

which is consistent with our intuition.

For Fig. 2, we generate the data from an uniform

distribution with different dimensions, and re-scale the

data to be ||X||F = 0.8. To compute the estimates

of bilinear RFF, we independently generate 10,000 triples

{wi, vi, bi} and calculate the following sample average:
∑k

i=1

[

φwi,vi
(X)φwi,vi(Y )

]

, where k = 10, 000. For

the estimates of RFF, we calculate the sample average with

10,000 independently generated pairs {wi, bi}.

3.2. Bounds on Expected Hamming Distance

In this section, we derive the upper and lower bounds on

the expected Hamming distance between binary codes com-

puted by BLSH-SIK to show that BLSH-SIK can generate
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Figure 2. Estimates of bilinear RFF (κb(·)) and its lower/upper bounds (kg(·) and kg(·)
0.79) with respect to Gaussian kernel values. Red

marks represent the inner products of two data points induced by bilinear RFF, and blue (black) marks represent its lower (upper) bounds.
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Figure 3. Upper and lower bounds on the expected Hamming dis-

tance between binary codes computed by BLSH-SIK and LSH-

SIK.

similarity-preserving binary codes in the sense of Gaussian

kernel. Lemma 2 is a slight modification of the expected

Hamming distance by LSH-SIK with a single projection

[11], indicating that the expected Hamming distance is ana-

lytically represented.

Lemma 2.

Ew,v,b,t

[

I
[

h(X) 6= h(Y )
]

]

=
8

π2

∞
∑

m=1

1− κb

(

mX −mY
)

4m2 − 1
.

Proof. This is a slight modification of the result (for a ran-

domized linear map) in [11]. Since the proof is straightfor-

ward, it is placed in the supplementary material.

Though the expected Hamming distance is analytically

represented with respect to κb, its relationship with κg is

not fully exploited. In order to figure out the similarity-

preserving property of BLSH-SIK in a more clear way, The-

orem 2 is described to show the upper and lower bounds on

the expected Hamming distance for BLSH-SIK in terms of

κg

(

vec(X − Y )
)

.

Theorem 2. Define the functions

g1(ζ) ,
4

π2

(

1− ζ0.79
)

,

g2(ζ) , min

{

1

2

√

1− ζ,
4

π2

(

1− 2

3
ζ

)}

,

where ζ ∈ [0, 1] and g1(0) = g2(0) =
4

π2 , g1(1) = g2(1) =
0. Gaussian kernel κg is shift-invariant, normalized, and

satisfies κg(αx − αy) ≤ κg(x − y) for any α ≥ 1. Then

the expected Hamming distance between any two embedded

points computed by bilinear LSH-SIK satisfies

g1

(

κg

(

τ
)

)

≤ E

[

I
[

h(X) 6= h(Y )
]

]

≤ g2

(

κg

(

τ
)

)

, (11)

where τ = vec(X − Y ).

Proof. We prove the upper and lower bound one at a time,

following the technique used in [11]. Note that the lower

bound g1(ζ) is slightly different from the one in Theorem

1, however the upper bound g2(ζ) is the same as the one in

Theorem 1.

Lower bound: It follows from Property 2 and Lemma 1 that
we can easily find the lower bound as

E

[

I
[

h(X) 6= h(Y )
]

]

≥
4

π2

(

1− κb

(

vec(X − Y )
)

)

≥
4

π2

(

1− κg

(

vec(X − Y )
)

0.79
)

, g1

(

κg

(

vec(X − Y )
)

)

.

Upper bound: By the proof of Lemma 2.3 [11], we can

easily find the upper bound as

E

[

I
[

h(X) 6= h(Y )
]

]

≤ min

{

1

2

√

1− κb

(

τ
)

,
4

π2

(

1− 2

3
κb

(

τ
)

)}

.

Moreover, the inequality κg

(

τ
)

≤ κb

(

τ
)

in Lemma 1



yields

E

[

I
[

h(X) 6= h(Y )
]

]

≤ min

{

1

2

√

1− κg

(

τ
)

,
4

π2

(

1− 2

3
κg

(

τ
)

)}

,

, g2

(

κg

(

τ
)

)

.

Theorem 2 shows that bilinear projections can gener-

ate similarity-preserving binary codes, where the expected

Hamming distance is upper and lower bounded in terms

of κg

(

vec(X − Y )
)

. Compared with the original upper

and lower bounds in case of a single projection shown in

the Lemma 2.3 [11], we derive the same upper bound and

slightly worse lower bound as depicted in Fig. 3.

3.3. Bounds on Covariance
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Figure 4. Upper bound on covariance between the two bits induced

by BLSH-SIK. Horizontal axis suggests a Gaussian kernel value of

two data points. Vertical axis shows an upper bound on covariance.

In this section, we analyze the covariance between two

bits induced by BLSH-SIK to address how much the per-

formance would be dropped compared with a single large

projection matrix.

A hash function for multiple bits using bilinear projec-

tions (8) implies that there exists the bits which share one

of the projection vectors. For example, assume that hi(·) is

given as

hi(X) = sgn
(

cos(w⊤
1
Xvi + bi) + ti

)

. (12)

We can easily find the following dv−1 hash functions which

shares w1 with hi(·).

hj(X) = sgn
(

cos(w⊤
1
Xvj + bj) + tj

)

, (13)

where j ∈ {1, · · · , dv} \ {i}.

If the two bits does not share any one of projection

vectors, the bits should be independent which indicates a

zero correlation. This phenomenon raises a natural ques-

tion to ask that how much the two bits, which share one

of projection vectors, are correlated. Intuitively, we expect

that the highly correlated bits are not favorable, because

such bits does contain redundant information to approxi-

mate E

[

I
[

h(X) 6= h(Y )
]

]

. Theorem 3 shows that the

upper bound on covariance between two bits induced by

bilinear projections is small, establishing the reason why

BLSH-SIK performs well enough in case of a large number

of bits.

Theorem 3. Given the hash functions as Eq. (12-13), the

upper bound on the covariance between the two bits is de-

rived as

cov(·) ≤ 64

π4















∞
∑

m=1

κg

(

vec(X − Y )
)0.79m2

4m2 − 1





2

−





∞
∑

m=1

κg

(

vec(X − Y )
)m2

4m2 − 1





2










,

where κg(·) is the Gaussian kernel and cov(·) is the covari-
ance between two bits defined as

cov(·) = E

[

I
[

hi(X) 6= hi(Y )
]

I
[

hj(X) 6= hj(Y )
]

]

− E

[

I
[

hi(X) 6= hi(Y )
]

]

E

[

I
[

hj(X) 6= hj(Y )
]

]

.

Proof. Since the proof is lengthy and tedious, the detailed

proof and lower bound on the covariance can be found in

the supplementary material.

Fig. 4 depicts the upper bound on covariance between

the two bits induced by BLSH-SIK with respect to Gaussian

kernel value. We can easily see that the covariance between

the two bits for the highly similar (κg(vec(X−Y )) ≈ 1) is

nearly zero, indicating that there is no correlation between

the two bits. Unfortunately, there exists unfavorable corre-

lation for the data points which is not highly (dis)similar.

To remedy such unfavorable correlation, a simple heuris-

tic is proposed, in which k × m2 bits are first generated

and randomly select the k bits when k is the desired num-

ber of bits and m is a free parameter for reducing the un-

favorable correlation trading-off storage and computational

costs. This simple heuristic reduces the correlation between

the two bits without incurring too much computational and

storage costs. Algorithm 1 summarizes the BLSH-SIK with

the proposed heuristic.

4. Experiments

In this section, we represent the numerical experimental

results to support the analysis presented in the previous sec-

tions, validating the practical usefulness of BLSH-SIK. For
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Figure 5. Precision-recall curves for LSH-SIK with a single projection (referred to as LSH-SIK-Single) and BLSH-SIK (referred to as

LSH-SIK-Bilinear) on MNIST with respect to the different number of bits. In case of BLSH-SIK, the precision-recall curves are plotted

for the different m, which is introduced to reduce the correlation in Algorithm 1.

Algorithm 1 LSH for Shift-invariant Kernels with Bilinear

Projections (BLSH-SIK)

Input: A data point is X ∈ R
dw×dv , k is the desired

number of bits, m is the hyper-parameter to reduce

the correlation, and I is a subset with k elements of

{1, 2, · · · ,m2 × k}.

Output: A binary code of X with k bits.

1: W ∈ R
dw×m

√
k and V ∈ R

dv×m
√
k are element-wise

drawn from the zero-mean Gaussian, N (0, 1).
2: b ∈ R

mk and t ∈ R
mk are element-wise drawn from

uniform distributions, Unif[0, 2π] and Unif[−1,+1],
respectively.

3: Generate a binary code whose the number of bit is k ×
m2: 1

2
(1 + sgn(cos(vec(W⊤XV ) + b) + t)).

4: Select the k-bits from the binary code using the pre-

defined subset I .

the numerical experiments, the two widely-used datasets,

MNIST 3 and Flickr45K 4, are used to investigate the behav-

iors of BLSH-SIK from small- to high-dimensional data.

MNIST consists of 70,000 handwritten digit images repre-

sented by a 28-by-28 matrix, where the raw images are used

for the experiments. Flickr45K is constructed by randomly

selecting 45,000 images from 1 million Flickr images used

in [7]. VLAD [7] is used to represent an image with 500

cluster centers, resulting in a 500 × 128 = 64, 000 dimen-

sional vector normalized to the unit length with l2 norm. For

BLSH-SIK, we reshape an image into a 250-by-256 matrix.

The ground-truth neighbors should be carefully con-

structed for comparing the hashing algorithm in a fair man-

ner. We adopt the same procedure to construct the ground-

truth neighbors presented in [11]. First of all, we decide

an appropriate threshold to judge which neighbors should

be ground-truth neighbors, where the averaged Euclidean

distance between the query and the 50th nearest neighbor

3http://yann.lecun.com/exdb/mnist/
4http://lear.inrialpes.fr/people/jegou/data.php
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Figure 6. Precision-recall curves for LSH-SIK with a single pro-

jection (referred to as LSH-SIK-Single) and BLSH-SIK (referred

to as LSH-SIK-Bilinear) on Flickr45K with respect to the different

number of bits, where the precision-recall curves for BLSH-SIK

are plotted for the different hyper-parameter m.

is set to the appropriate threshold. Then, the ground-truth

neighbor is decided if the distance between the query and

the point is less than the threshold. Finally, we re-scale

the dataset such that the threshold is one, leading that the

scaling parameter for Gauassian kernel can be set to one.

For both datasets, we randomly select 300 data points for

queries, and the queries which has more than 5,000 ground-

truth neighbors are excluded. To avoid any biased results,

all precision-recall curves in this section are plotted by er-

ror bars with mean and one standard deviation over 5 times

repetition.

Fig. 5 and 6 represent precision-recall curves for LSH-

SIK with a single projection and BLSH-SIK on MNIST

and Flickr45K with respect to the different number of bits.

In case of BLSH-SIK, the precision-recall curves are plot-

ted for the different m, which is introduced to reduce the

correlation in Algorithm 1. From the both figures, we ob-

serve that the larger m helps to reduce the correlation of the

bits induced by BLSH-SIK. Even though BLSH-SIK cannot

generate the same performance of LSH-SIK with a single

projection, we argue that the performance is comparable.

Moreover, the computational time and memory consump-

tion for generating binary codes are significantly reduced as
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Figure 8. Precision-recall curves for LSH-SIK with a single projection (referred to as Single) and BLSH-SIK (referred to as Bilinear) on

Flickr45K when the same computational time for generating a binary code is required to LSH-SIK with a single projection and BLSH-SIK.

The first (second) row shows the results when m of BLSH-SIK is one (five).

14,400 40,000 62,500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# bits

ti
m

e
 (

s
e

c
)

 

 

Single
Bilinear (m=1)
Bilinear (m=5)
Bilinear (m=10)

(a) Computational time

14,400 40,000 62,500
0

5

10

15

# bits

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
ig

a
b

y
te

s
)

 

 

Single
Bilinear (m=1)
Bilinear (m=5)
Bilinear (m=10)

(b) Memory consumption

Figure 7. Comparison between LSH-SIK with a single large pro-

jection (referred to as Single) and BLSH-SIK (referred to as Bilin-

ear) in terms of the computational time and memory consumption

on the Flickr45K dataset.

explained in the next paragraph.

Fig. 7 represents the comparison between LSH-SIK

with a single large projection and BLSH-SIK in terms of

the computational time 5 and memory consumption on the

Flickr45K dataset. In case of BLSH-SIK, the time cost and

memory consumption are reported with respect to the differ-

ent m, which evidently shows that the computational time

and memory consumption of BLSH-SIK are much smaller

than LSH-SIK with a single projection. From Fig. 5, 6 and

7, we can conclude that m = 5 is a good choice for BLSH-

SIK, because m = 5 performs well compared to m = 10

5To measure the computational time, a single thread is used with a Intel

i7 3.60GHz machine (64GB main memory). Fig. 7 (a) does not include

the computational time of LSH-SIK with a single projection for 62,500bits

due to the high memory consumption.

but it is much faster than m = 10.

Fig. 8 represents the precision-recall curves for LSH-

SIK with a single projection and BLSH-SIK on Flickr45K

with the same computational time limitation for generating

a binary code. Therefore, fewer bits are used for LSH-SIK

with a single projection compared to BLSH-SIK. For both

m = 1 and m = 5, BLSH-SIK is superior to LSH-SIK with

a single projection with the same computational time.

5. Conclusions

In this paper we have presented a bilinear extension of

LSH-SIK [11], referred to as BLSH-SIK, where we proved

that the expected Hamming distance between the binary

codes of two vectors is related to the value of Gaussian ker-

nel when column vectors of projection matrices are inde-

pendently drawn from spherical Gaussian distribution. Our

theoretical analysis have confirmed that: (1) randomized bi-

linear projection yields similarity-preserving binary codes;

(2) the performance of BLSH-SIK is comparable to LSH-

SIK, showing that the correlation between two bits of bi-

nary codes computed by BLSH-SIK is small. Numerical

experiments on MNIST and Flickr45K datasets confirmed

the validity of our method.
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