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Not all measured features in SLAM/SfM contribute to accurate localization
during the estimation process, thus it is sensible to utilize only those that do.
Conventionally, a fully data-driven and randomized process like RANSAC
is used to select the valuable features by retrieving the inlier set [5]. Infor-
mation gain [3, 4] has also been a popular criterion for such a selection, will
maximize the uncertainty reduction for both the camera pose and landmark
positions. Recent research efforts have sought more systematic criteria. [2]
exploits the co-visibility of features by cameras to select the best subset of
points, but it requires the complete structure of features-camera graph as a
priori knowledge.

This paper presents a novel method for selecting a subset of features
that are of high utility for localization in the SLAM/SfM estimation pro-
cess, by examining the observability of SLAM. Being complimentary to
the estimation process, it easily integrates into existing SLAM systems.

Figure 1: Overview of our approach.

Overview. As depicted in Figure 1, in a time step, we first examine the rank
conditions for features, i.e. whether the feature is completely observable to
the SLAM system. If rank condition is satisfied (depicted in green/purple),
the τ-temporal observability score is evaluated, and features with high
scores are selected (depicted in green). When needed, feature grouping with
a submodular learning scheme is applied to collect more good features.

System Modeling. We measure the system observability by first mod-
eling the a SE〈3〉 SLAM as a Piece-wise Linear System (PWLS). As-
sume the SLAM system has N f features and Na anchors. For the k-th
time segment Tk ≡ [tk, tk+1) (from time k to time k+ 1), the dynamics are
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Under smooth motion assumption, system at Tk is linearized as a PWLS [6].{
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System Observable Conditions. A PWLS is completely observable iff
Total Observability Matrix (TOM) is full-rank, but computing TOM is ex-
pensive. Lemma 1 provides a proxy to examine full rank conditions.

Lamma 1. [6] For PWLS, when N (Q j)⊂N (Fj), the stripped Observabil-

ity Matrix (SOM). QSOM( j) =
[
Q>1 |Q>2 | · · · |Q>j

]>
. has the same nullspace

as TOM, i.e. N (QSOM( j)) =N (QTOM( j)). Q j is the linear observability
matrix for time segment j.

Our work proves the completely observable conditions of SE〈3〉 SLAM.

Theorem 1. When N f = 0, a necessary condition for system (1) to be com-
pletely observable within J is (1) J = 1 and Na ≥ 3, or (2) J ≥ 2 and Na ≥ 1.

System Observability Measure. We define the τ-temporal observability
score of a feature across τ local frames, τ ≥ 2 as:

ψ( f ,τ) = σmin(QSOM(τ| f )),
where at time k, QSOM(τ| f ) is defined on the time segments (k− τ),(k−
τ + 1), ...,k. This temporal observability score measures how constrained
the SLAM estimate is w.r.t. the feature observation in the projective space.
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Figure 2: Measurements selected (highlighted in yellow) by considering observability
scores. In the example the camera is mostly rotating w.r.t. the optical axis.

Rank-k Temporal Update of Observability Score. Computation of the τ-
temporal observability score is efficient. Firstly, each subblock in Q is com-
puted iteratively with HFn =

(
H1∼3 H4∼7Qn H1∼3n∆t H4∼7 ∑

n−1
i=0 QiΩ

)
.

Secondly, the running temporal observability score is computed effi-
ciently with incremental SVD [1] with the following phases:
1. In the first two frames that a feature is tracked, the observability cannot

be full-rank. Build the SOM;
2. In frame three, the full rank condition of SOM may be satisfied. Com-

pute SVD of the SOM;
3. From frame 4 to frame τ + 1 (in total τ time segments), for each new

time segment a block of linear observability matrix is added to the SOM,
with a constant time rank-k update of the SVD;

4. After frame τ + 1, for each new frame, update the SOM by replacing
the subblock from the oldest time segment with the linear observability
matrix of the current time segment, again by a rank-k update.

Submodular Learning for Feature Grouping. When needed, the group
completion step selects more features as anchors by maximizing the mini-
mum singular value of SOM over the selected features. Adding a feature
results in adding a row-block Rk to the SOM. Finding K∗ features which
form the most observable SLAM subsystem is equivalent to finding a sub-
set of the candidate rows that maximize the minimum singular value of the
augmented matrix

R∗ = argmax
R∗⊆R,|R∗|=K∗

σmin

([
X>|R∗>1 |R∗>2 |...|R∗>K∗

]>)
This is an NP-hard problem. Our work proves that the objective function

is approximately submodular.
Theorem 2. When X∩R = /0, the set function Fσmin (·) : 2X∪R 7→ R is ap-

proximately submodular, Fσmin (X∪R∗) = σmin

([
X>|R∗>1 |R∗>2 |...|R∗>K∗

]>)
.

Thus, a greedy selection algorithm gives a near-optimal solution [7].
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