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Abstract

Despite significant progress in object categorization, in

recent years, a number of important challenges remain;

mainly, ability to learn from limited labeled data and ability

to recognize object classes within large, potentially open,

set of labels. Zero-shot learning is one way of addressing

these challenges, but it has only been shown to work with

limited sized class vocabularies and typically requires sep-

aration between supervised and unsupervised classes, al-

lowing former to inform the latter but not vice versa. We

propose the notion of semi-supervised vocabulary-informed

learning to alleviate the above mentioned challenges and

address problems of supervised, zero-shot and open set

recognition using a unified framework. Specifically, we pro-

pose a maximum margin framework for semantic manifold-

based recognition that incorporates distance constraints

from (both supervised and unsupervised) vocabulary atoms,

ensuring that labeled samples are projected closest to their

correct prototypes, in the embedding space, than to others.

We show that resulting model shows improvements in super-

vised, zero-shot, and large open set recognition, with up to

310K class vocabulary on AwA and ImageNet datasets.

1. Introduction

Object recognition, and more specifically object catego-

rization, has seen unprecedented advances in recent years

with development of convolutional neural networks (CNNs)

[23]. However, most successful recognition models, to

date, are formulated as supervised learning problems, in

many cases requiring hundreds, if not thousands, labeled in-

stances to learn a given concept class [10]. This exuberant

need for large labeled datasets has limited recognition mod-

els to domains with 100’s to few 1000’s of classes. Humans,

on the other hand, are able to distinguish beyond 30, 000 ba-

sic level categories [5]. What is more impressive, is the fact

that humans can learn from few examples, by effectively

leveraging information from other object category classes,

and even recognize objects without ever seeing them (e.g.,

by reading about them on the Internet). This ability has

spawned research in few-shot and zero-shot learning.

Figure 1. Illustration of the semantic embeddings learned (left)

using support vector regression (SVR) and (right) using the pro-

posed semi-supervised vocabulary-informed (SS-Voc) approach.

In both cases, t-SNE visualization is used to illustrate samples

from 4 source/auxiliary classes (denoted by ×) and 2 target/zero-

shot classed (denoted by ◦) from the ImageNet dataset. Decision

boundaries, illustrated by dashed lines, are drawn by hand for vi-

sualization. Note, that (i) large margin constraints in SS-Voc, both

among the source/target classes and the external vocabulary atoms

(denoted by arrows and words), and (ii) fine-tuning of the seman-

tic word space, lead to a better embedding with more compact and

separated classes (e.g., see truck and car or unicycle and tricycle).

Zero-shot learning (ZSL) has now been widely stud-

ied in a variety of research areas including neural decod-

ing by fMRI images [31], character recognition [26], face

verification [24], object recognition [25], and video un-

derstanding [17, 45]. Typically, zero-shot learning ap-

proaches aim to recognize instances from the unseen or

unknown testing target categories by transferring informa-

tion, through intermediate-level semantic representations,

from known observed source (or auxiliary) categories for

which many labeled instances exist. In other words, super-

vised classes/instances, are used as context for recognition

of classes that contain no visual instances at training time,

but that can be put in some correspondence with supervised

classes/instances. As such, a general experimental setting

of ZSL is that the classes in target and source (auxiliary)
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dataset are disjoint and typically the learning is done on the

source dataset and then information is transferred to the tar-

get dataset, with performance measured on the latter.

This setting has a few important drawbacks: (1) it as-

sumes that target classes cannot be mis-classified as source

classes and vice versa; this greatly and unrealistically sim-

plifies the problem; (2) the target label set is often relatively

small, between ten [25] and several thousand unknown la-

bels [14], compared to at least 30, 000 entry level categories

that humans can distinguish; (3) large amounts of data in the

source (auxiliary) classes are required, which is problematic

as it has been shown that most object classes have only few

instances (long-tailed distribution of objects in the world

[40]); and (4) the vast open set vocabulary from semantic

knowledge, defined as part of ZSL [31], is not leveraged in

any way to inform the learning or source class recognition.

A few works recently looked at resolving (1) through

class-incremental learning [38, 39] which is designed to dis-

tinguish between seen (source) and unseen (target) classes

at the testing time and apply an appropriate model – super-

vised for the former and ZSL for the latter. However, (2)–

(4) remain largely unresolved. In particular, while (2) and

(3) are artifacts of the ZSL setting, (4) is more fundamen-

tal. For example, consider learning about a car by looking

at image instances in Fig.1. Not knowing that other mo-

tor vehicles exist in the world, one may be tempted to call

anything that has 4-wheels a car. As a result the zero-shot

class truck may have large overlap with the car class (see

Fig.1 [SVR]). However, imagine knowing that there also

exist many other motor vehicles (trucks, mini-vans, etc).

Even without having visually seen such objects, the very

basic knowledge that they exist in the world and are closely

related to a car should, in principal, alter the criterion for

recognizing instance as a car (making the recognition cri-

terion stricter in this case). Encoding this in our [SS-Voc]

model results in better separation among classes.

To tackle the limitations of ZSL and towards the goal of

generic open set recognition, we propose the idea of semi-

supervised vocabulary-informed learning. Specifically, as-

suming we have few labeled training instances and a large

open set vocabulary/semantic dictionary (along with textual

sources from which statistical semantic relations among vo-

cabulary atoms can be learned), the task of semi-supervised

vocabulary-informed learning is to learn a model that uti-

lizes semantic dictionary to help train better classifiers for

observed (source) classes and unobserved (target) classes in

supervised, zero-shot and open set image recognition set-

tings. Different from standard semi-supervised learning, we

do not assume unlabeled data is available, to help train clas-

sifier, and only vocabulary over the target classes is known.

Contributions: Our main contribution is to propose a novel

paradigm for potentially open set image recognition: semi-

supervised vocabulary-informed learning (SS-Voc), which

is capable of utilizing vocabulary over unsupervised items,

during training, to improve recognition. A unified maxi-

mum margin framework is used to encode this idea in prac-

tice. Particularly, classification is done through nearest-

neighbor distance to class prototypes in the semantic em-

bedding space, and we encode a set of constraints ensur-

ing that labeled images project into semantic space such

that they end up closer to the correct class prototypes than

to incorrect ones (whether those prototypes are part of the

source or target classes). We show that word embedding

(word2vec) can be used effectively to initialize the se-

mantic space. Experimentally, we illustrate that through

this paradigm: we can achieve competitive supervised (on

source classes) and ZSL (on target classes) performance, as

well as open set image recognition performance with large

number of unobserved vocabulary entities (up to 300, 000);

effective learning with few samples is also illustrated.

2. Related Work

One-shot Learning: While most of machine learning-

based object recognition algorithms require large amount

of training data, one-shot learning [12] aims to learn ob-

ject classifiers from one, or only few examples. To com-

pensate for the lack of training instances and enable one-

shot learning, knowledge much be transferred from other

sources, for example, by sharing features [3], semantic at-

tributes [17, 25, 34, 35], or contextual information [41].

However, none of previous works had used the open set vo-

cabulary to help learn the object classifiers.

Zero-shot Learning: ZSL aims to recognize novel classes

with no training instance by transferring knowledge from

source classes. ZSL was first explored with use of attribute-

based semantic representations [11, 15, 17, 18, 24, 32]. This

required pre-defined attribute vector prototypes for each

class, which is costly for a large-scale dataset. Recently,

semantic word vectors were proposed as a way to embed

any class name without human annotation effort; they can

therefore serve as an alternative semantic representation

[2, 14, 19, 30] for ZSL. Semantic word vectors are learned

from large-scale text corpus by language models, such as

word2vec [29], or GloVec [33]. However, most of previ-

ous work only use word vectors as semantic representations

in ZSL setting, but have neither (1) utilized semantic word

vectors explicitly for learning better classifiers; nor (2) for

extending ZSL setting towards open set image recognition.

A notable exception is [30] which aims to recognize 21K

zero-shot classes given a modest vocabulary of 1K source

classes; we explore vocabularies that are up to an order of

the magnitude larger – 310K.

Open-set Recognition: The term “open set recognition”

was initially defined in [37, 38] and formalized in [4, 36]

which mainly aims at identifying whether an image belongs
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to a seen or unseen classes. It is also known as class-

incremental learning. However, none of them can further

identify classes for unseen instances. An exception is [30]

which augments zero-shot (unseen) class labels with source

(seen) labels in some of their experimental settings. Simi-

larly, we define the open set image recognition as the prob-

lems of recognizing the class name of an image from a po-

tentially very large open set vocabulary (including, but not

limited to source and target labels). Note that methods like

[37, 38] are orthogonal but potentially useful here – it is

still worth identifying seen or unseen instances to be rec-

ognized with different label sets as shown in experiments.

Conceptually similar, but different in formulation and task,

open-vocabulary object retrieval [20] focused on retrieving

objects using natural language open-vocabulary queries.

Visual-semantic Embedding: Mapping between visual

features and semantic entities has been explored in two

ways: (1) directly learning the embedding by regressing

from visual features to the semantic space using Support

Vector Regressors (SVR) [11, 25] or neural network [39];

(2) projecting visual features and semantic entities into a

common new space, such as SJE [2], WSABIE [44], ALE

[1], DeViSE [14], and CCA [16, 18]. In contrast, our model

trains a better visual-semantic embedding from only few

training instances with the help of large amount of open set

vocabulary items (using a maximum margin strategy). Our

formulation is inspired by the unified semantic embedding

model of [21], however, unlike [21], our formulation is built

on word vector representation, contains a data term, and in-

corporates constraints to unlabeled vocabulary prototypes.

3. Vocabulary-informed Learning

Assume a labeled source dataset Ds = {xi, zi}
Ns

i=1
of Ns

samples, where xi ∈ R
p is the image feature representation

of image i and zi ∈ Ws is a class label taken from a set

of English words or phrases W; consequently, |Ws| is the

number of source classes. Further, suppose another set of

class labels for target classes Wt, such that Ws ∩Wt = ∅,

for which no labeled samples are available. We note that

potentially |Wt| >> |Ws|. Given a new test image feature

vector x∗ the goal is then to learn a function z∗ = f(x∗),
using all available information, that predicts a class label

z∗. Note that the form of the problem changes drastically

depending on which label set assumed for z∗: Supervised

learning: z∗ ∈ Ws; Zero-shot learning: z∗ ∈ Wt; Open set

recognition: z∗ ∈ {Ws,Wt} or, more generally, z∗ ∈ W .

We posit that a single unified f(x∗) can be learned for all

three cases. We formalize the definition of semi-supervised

vocabulary-informed learning (SS-Voc) as follows:

Definition 3.1. Semi-supervised Vocabulary-informed

Learning (SS-Voc): is a learning setting that makes use

of complete vocabulary data (W) during training. Unlike

a more traditional ZSL that typically makes use of the

vocabulary (e.g., semantic embedding) at test time, SS-Voc

utilizes exactly the same data during training. Notably,

SS-Voc requires no additional annotations or semantic

knowledge; it simply shifts the burden from testing to

training, leveraging the vocabulary to learn a better model.

The vocabulary W can come from a semantic embedding

space learned by word2vec [29] or GloVec [33] on large-

scale corpus; each vocabulary entity w ∈ W is represented

as a distributed semantic vector u ∈ R
d. Semantics of em-

bedding space help with knowledge transfer among classes,

and allow ZSL and open set image recognition. Note that

such semantic embedding spaces are equivalent to the “se-

mantic knowledge base” for ZSL defined in [31] and hence

make it appropriate to use SS-Voc in ZSL setting.

Assuming we can learn a mapping g : Rp → R
d, from

image features to this semantic space, recognition can be

carried out using simple nearest neighbor distance, e.g.,

f(x∗) = car if g(x∗) is closer to ucar than to any other

word vector; uj in this context can be interpreted as the

prototype of the class j. Thus the core question is then how

to learn the mapping g(x) and what form of inference is

optimal in the semantic space. For learning we propose dis-

criminative maximum margin criterion that ensures that la-

beled samples xi project closer to their corresponding class

prototypes uzi than to any other prototype ui in the open

set vocabulary i ∈ W \ zi.

3.1. Learning Embedding

Our maximum margin vocabulary-informed embedding

learns the mapping g(x) : R
p → R

d, from low-level

features x to the semantic word space by utilizing maxi-

mum margin strategy. Specifically, consider g(x) = WT
x,

where1 W ⊆ R
p×d. Ideally we want to estimate W such

that uzi = WT
xi for all labeled instances in Ds (we would

obviously want this to hold for instances belonging to unob-

served classes as well, but we cannot enforce this explicitly

in the optimization as we have no labeled samples for them).

Data Term: The easiest way to enforce the above objective

is to minimize Euclidian distance between sample projec-

tions and appropriate prototypes in the embedding space2:

D (xi,uzi) =‖ WT
xi − uzi ‖

2
2 . (1)

We need to minimize this term with respect to each instance

(xi,uzi), where zi is the class label of instance xi in Ds. To

prevent overfitting, we further regularize the solution:

L (xi,uzi) = D (xi,uzi) + λ ‖ W ‖2F , (2)

where ‖ · ‖F indicates the Frobenius Norm. Solution to the

Eq.(2) can be obtained through ridge regression.

1Generalizing to a kernel version is straightforward, see [43].
2Eq.(1) is also called data embedding [21] / compatibility function [2].
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Nevertheless, to make the embedding more comparable

to support vector regression (SVR), we employ the maximal

margin strategy – ǫ−insensitive smooth SVR (ǫ−SSVR)

[27] to replace the least square term in Eq.(2). That is,

L (xi,uzi) = Lǫ (xi,uzi) + λ ‖ W ‖2F , (3)

where Lǫ (xi,uzi) = 1
T | ξ |2ǫ ; λ is regularization coef-

ficient. (|ξ|ǫ)j = max
{

0, |WT
⋆jxi − (uzi)j | − ǫ

}

, |ξ|ǫ ∈

R
d, and ()j indicates the j-th value of corresponding vector.

W⋆j is the j-th column of W . The conventional ǫ−SVR

is formulated as a constrained minimization problem, i.e.,

convex quadratic programming problem, while ǫ−SSVR

employs quadratic smoothing [47] to make Eq.(3) differ-

entiable everywhere, and thus ǫ−SSVR can be solved as an

unconstrained minimization problem directly3.

Pairwise Term: Data term above only ensures that labelled

samples project close to their correct prototypes. However,

since it is doing so for many samples and over a number of

classes, it is unlikely that all the data constraints can be sat-

isfied exactly. Specifically, consider the following case, if

uzi is in the part of the semantic space where no other enti-

ties live (i.e., distance from uzi to any other prototype in the

embedding space is large), then projecting xi further away

from uzi is asymptomatic, i.e., will not result in misclassifi-

cation. However, if the uzi is close to other prototypes then

minor error in regression may result in misclassification.

To embed this intuition into our learning, we enforce

more discriminative constraints in the learned semantic em-

bedding space. Specifically, the distance of D (xi,uzi)
should not only be as close as possible, but should also be

smaller than the distance D (xi,ua), ∀a 6= zi. Formally,

we define the vocabulary pairwise maximal margin term 4:

MV (xi,uzi) =
1

2

AV
∑

a=1

[

C +
1

2
D (xi,uzi)−

1

2
D (xi,ua)

]2

+

(4)

where a ∈ Wt is selected from the open vocabulary; C is

the margin gap constant. Here, [·]2
+

indicates the quadrat-

ically smooth hinge loss [47] which is convex and has the

gradient at every point. To speedup computation, we use

the closest AV target prototypes to each source/auxiliary

prototype uzi in the semantic space. We also define similar

constraints for the source prototype pairs:

MS (xi,uzi) =
1

2

BS
∑

b=1

[

C +
1

2
D (xi,uzi)−

1

2
D (xi,ub)

]2

+

(5)

3We found Eq.(2) and Eq.(3) have similar results, on average, but for-

mulation in Eq.(3) is more stable and has lower variance.
4Crammer and Singer loss [42, 8] is the upper bound of Eq (4) and (5)

which we use to tolerate variants of uzi
(e.g. ’pigs’ Vs. ’pig’ in Fig. 2)

and thus are better for our tasks.

where b ∈ Ws is selected from source/auxiliary dataset

vocabulary. This term enforces that D (xi,uzi) should be

smaller than the distance D (xi,ub), ∀b 6= zi. To facil-

itate the computation, we similarly use closest BS proto-

types that are closest to each prototype uzi in the source

classes. Our complete pairwise maximum margin term is:

M (xi,uzi) = MV (xi,uzi) +MS (xi,uzi) . (6)

We note that the form of rank hinge loss in Eq.(4) and Eq.(5)

is similar to DeViSE [14], but DeViSE only considers loss

with respect to source/auxiliary data and prototypes.

Vocabulary-informed Embedding: The complete com-

bined objective can now be written as:

W = argmin
W

nT
∑

i=1

(αLǫ (xi,uyi
) +

(1− α)M (xi,uzi)) + λ ‖ W ‖2F , (7)

where α ∈ [0, 1] is ratio coefficient of two terms. One prac-

tical advantage is that the objective function in Eq.(7) is an

unconstrained minimization problem which is differentiable

and can be solved with L-BFGS. W is initialized with all

zeros and converges in 10− 20 iterations.

Fine-tuning Word Vector Space: Above formulation

works well assuming semantic space is well laid out and

linear mapping is sufficient. However, we posit that word

vector space itself is not necessarily optimal for visual dis-

crimination. Consider the following case: two visually sim-

ilar categories may appear far away in the semantic space.

In such a case, it would be difficult to learn a linear mapping

that matches instances with category prototypes properly.

Inspired by this intuition, which has also been expressed

in natural language models [6], we propose to fine-tune the

word vector representation for better visual discriminability.

One can potentially fine-tune the representation by opti-

mizing ui directly, in an alternating optimization (e.g., as in

[21]). However, this is only possible for source/auxiliary

class prototypes and would break regularities in the se-

mantic space, reducing ability to transfer knowledge from

source/auxilary to target classes. Alternatively, we propose

optimizing a global warping, V , on the word vector space:

{W,V } = argmin
W,V

nT
∑

i=1

(αLǫ (xi,uyi
V ) +

(1− α)M (xi,uziV )) + λ ‖ W ‖2F +µ ‖ V ‖2F , (8)

where µ is regularization coefficient. Eq.(8) can still be

solved using L-BFGS and V is initialized using an identity

matrix. The algorithm first updates W and then V ; typically

the step of updating V can converge within 10 iterations and

the corresponding class prototypes used for final classifica-

tion are updated to be uziV .
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3.2. Maximum Margin Embedding Recognition

Once embedding model is learned, recognition in the se-

mantic space can be done in a variety of ways. We explore

a simple alternative to classify the testing instance x
⋆,

z∗ = argmin
i

‖ Wx
∗ − φ (ui, V,W,x∗) ‖22 . (9)

Nearest Neighbor (NN) classifier directly measures the dis-

tance between predicted semantic vectors with the proto-

types in semantic space, i.e., φ (ui, V,W,x∗) = uiV . We

further employ the k-nearest neighbors (KNN) of testing in-

stances to average the predictions, i.e., φ (·) is averaging the

KNN instances of predicted semantic vectors.5

4. Experiments

Datasets. We conduct our experiments on Animals with At-

tributes (AwA) dataset, and ImageNet 2012/2010 dataset.

AwA consists of 50 classes of animals (30, 475 images in

total). In [25] standard split into 40 source/auxiliary classes

(|Ws| = 40) and 10 target/test classes (|Wt| = 10) is

introduced. We follow this split for supervised and zero-

shot learning. We use OverFeat features (downloaded from

[19]) on AwA to make the results more easily compara-

ble to state-of-the-art. ImageNet 2012/2010 dataset is a

large-scale dataset. We use 1000 (|Ws| = 1000) classes

of ILSVRC 2012 as the source/auxiliary classes and 360
(|Wt| = 360) classes of ILSVRC 2010 that are not used

in ILSVRC 2012 as target data. We use pre-trained VGG-

19 model [7] to extract deep features for ImageNet. On

both dataset, we use few instances from source dataset to

mimic human performance of learning from few examples

and ability to generalize.

Recognition tasks. We consider three different settings in

a variety of experiments (in each experiment we carefully

denote which setting is used):

SUPERVISED recognition, where learning is on source

classes and we assume test instances come from same

classes with Ws as recognition vocabulary;

ZERO-SHOT recognition, where learning is on source

classes and we assume test instances coming from tar-

get dataset with Wt as recognition vocabulary;

OPEN-SET recognition, where we use entirely open vocab-

ulary with |W| ≈ 310K and use test images from both

source and target splits.

Competitors. We compare the following models,

5This strategy is known as Rocchio algorithm in information retrieval.

Rocchio algorithm is a method for relevance feedback by using more rel-

evant instances to update the query instances for better recall and possibly

precision in vector space (Chap 14 in [28]). It was first suggested for use

on ZSL in [17]; more sophisticated algorithms [16, 34] are also possible.

SVM: SVM classifier trained directly on the training in-

stances of source data, without the use of semantic em-

bedding. This is the standard (SUPERVISED) learning

setting and the learned classifier can only predict the

labels in testing data of source classes.

SVR-Map: SVR is used to learn W and the recognition is

done in the resulting semantic manifold. This corre-

sponds to only using Eq.(3) to learn W .

DeVise, ConSE, AMP: To compare with state-of-the-art

large-scale zero-shot learning approaches we imple-

ment DeViSE [14] and ConSE [30]6. ConSE uses

a multi-class logistic regression classifier for predict-

ing class probabilities of source instances; and the pa-

rameter T (number of top-T nearest embeddings for a

given instance) was selected from {1, 10, 100, 1000}
that gives the best results. ConSE method in super-

vised setting works the same as SVR. We use the AMP

code provided on the author webpage [19].

SS-Voc: We test three different variants of our method.

closed is a variant of our maximum margin leaning

of W with the vocabulary-informed constraints

only from known classes (i.e., closed set Ws).

W corresponds to our full model with maximum mar-

gin constraints coming from both Ws and Wt (or

W). We compute W using Eq.(7), but without

optimizing V .

full further fine-tunes the word vector space by also

optimizing V using Eq.(8).

Open set vocabulary. We use google word2vec to learn the

open set vocabulary set from a large text corpus of around 7
billion words: UMBC WebBase (3 billion words), the latest

Wikipedia articles (3 billion words) and other web docu-

ments (1 billion words). Some rare (low frequency) words

and high frequency stopping words were pruned in the vo-

cabulary set: we remove words with the frequency < 300
or > 10million times. The result is a vocabulary of around

310K words/phrases with openness ≈ 1, which is defined

as openness = 1−
√

(2× |Ws|) / (|W|). [38].

Computational and parameters selection and scalability.

All experiments are repeated 10 times, to avoid noise due to

small training set size, and we report an average across all

runs. For all the experiments, the mean accuracy is reported,

i.e., the mean of the diagonal of the confusion matrix on the

prediction of testing data. We fix the parameters µ and λ
as 0.01 and α = 0.6 in our experiments when only few

training instances are available for AwA (5 instances per

class) and ImageNet (3 instances per class). Varying values

of λ, µ and α leads to < 1% variances on AwA and <
0.2% variances on ImageNet dataset; but the experimental

conclusions still hold. Cross-validation is conducted when

6Code for [14] and [30] is not publicly available.
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Testing Classes SS-Voc

Aux Targ. Total Vocab Chance SVM SVR closed W full

SUPERVISED X 40 40 2.5 52.1 51.4/57.1 52.9/58.2 53.6/58.6 53.9/59.1

ZERO-SHOT X 10 10 10 - 52.1/58.0 58.6/60.3 59.5/68.4 61.1/68.9

Table 1. Classification accuracy (%) on AwA dataset for SUPERVISED and ZERO-SHOT settings for 100/1000-dim word2vec representation.

more training instances are available. AV and BS are set to

5 to balance computational cost and efficiency of pairwise

constraints.

To solve Eq.(8) at a scale, one can use Stochastic Gra-

dient Descent (SGD) which makes great progress initially,

but often is slow when approaches a solution. In contrast,

the L-BFGS method mentioned above can achieve steady

convergence at the cost of computing the full objective and

gradient at each iteration. L-BFGS can usually achieve bet-

ter results than SGD with good initialization, however, is

computationally expensive. To leverage benefits of both of

these methods, we utilize a hybrid method to solve Eq.(8)

in large-scale datasets: the solver is initialized with few in-

stances to approximate the gradients using SGD first, then

gradually more instances are used and switch to L-BFGS

is made with iterations. This solver is motivated by Fried-

lander et al. [13], who theoretically analyzed and proved

the convergence for the hybrid optimization methods. In

practice, we use L-BFGS and the Hybrid algorithms for

AwA and ImageNet respectively. The hybrid algorithm can

save between 20 ∼ 50% training time as compared with

L-BFGS.

4.1. Experimental results on AwA dataset

We report AwA experimental results in Tab. 1, which

uses 100/1000-dimensional word2vec representation (i.e.,

d = 100/1000). We highlight the following observa-

tions: (1) SS-Voc variants have better classification accu-

racy than SVM and SVR. This validates the effectiveness

of our model. Particularly, the results of our SS-Voc:full

are 1.8/2% and 9/10.9% higher than those of SVR/SVM

on supervised and zero-shot recognition respectively. Note

that though the results of SVM/SVR are good for supervised

recognition tasks (52.1 and 51.4/57.1 respectively), we can

further improve them, which we attribute to the more dis-

criminative classification boundary informed by the vocab-

ulary. (2) SS-Voc:W significantly, by up to 8.1%, improves

zero-shot recognition results of SS-Voc:closed. This val-

idates the importance of information from open vocabu-

lary. (3) SS-Voc benefits more from open set vocabulary

as compared to word vector space fine-tuneing. The results

of supervised and zero-shot recognition of SS-Voc:full are

1/0.9% and 2.5/8.6% higher than those of SS-Voc:closed.

Comparing to state-of-the-art on ZSL: We compare our

results with the state-of-the-art ZSL results on AwA dataset

in Tab. 2. We compare SS-Voc:full trained with all source

instances, 800 (20 instances / class), and 200 instances (5 in-

Methods S. Sp Features Acc.

SS-Voc:full W CNNOverFeat 78.3
800 instances W CNNOverFeat 74.4
200 instances W CNNOverFeat 68.9

Akata et al. [2] A+W CNNGoogleLeNet 73.9
TMV-BLP [16] A+W CNNOverFeat 69.9

AMP (SR+SE) [19] A+W CNNOverFeat 66.0
DAP [25] A CNNVGG19 57.5
PST[34] A+W CNNOverFeat 54.1
DAP [25] A CNNOverFeat 53.2
DS [35] W/A CNNOverFeat 52.7

Jayaraman et al. [22] A low-level 48.7
Yu et al. [46] A low-level 48.3

IAP [25] A CNNOverFeat 44.5
HEX [9] A CNNDECAF 44.2

AHLE [1] A low-level 43.5
Table 2. Zero-shot comparison on AwA. We compare the

state-of-the-art ZSL results using different semantic spaces (S.

Sp) including word vector (W) and attribute (A). 1000 dimension

word2vec dictionary is used for SS-Voc. (Chance-level =10%).

Different types of CNN and hand-crafted low-level feature are

used by different methods. Except SS-Voc (200/800), all instances

of source data (24295 images) are used for training. As a general

reference, the classification accuracy on ImageNet: CNNDECAF <
CNNOverFeat < CNNVGG19 < CNNGoogleLeNet.

stances / class). Our model achieves 78.3% accuracy, which

is remarkably higher than all previous methods. This is par-

ticularly impressive taking into account the fact that we use

only a semantic space and no additional attribute represen-

tations that many other competitor methods utilize. Fur-

ther, our results with 800 training instances, a small frac-

tion of the 24, 295 instances used to train all other meth-

ods, already outperform all other approaches. We argue that

much of our success and improvement comes from a more

discriminative information obtained using an open set vo-

cabulary and corresponding large margin constraints, rather

than from the features, since our method improved 25.1%
as compared with DAP [25] which uses the same Over-

Feat features. Note, our SS-Voc:full result is 4.4% higher

than the closest competitor [2]; this improvement is statis-

tically significant. Comparing with our work, [2] did not

only use more powerful visual features (GoogLeNet Vs.

OverFeat), but also employed more semantic embeddings

(attributes, GloVe7 and WordNet-derived similarity embed-

dings as compared to our word2vec).

7GloVe[33] can be taken as an improved version of word2vec.
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Large-scale open set recognition: Here we focus on

OPEN-SET310K setting with the large vocabulary of approx-

imately 310K entities; as such the chance performance of

the task is much much lower. In addition, to study the ef-

fect of performance as a function of the open vocabulary

set, we also conduct two additional experiments with dif-

ferent label sets: (1) OPEN-SET1K−NN : the 1000 labels

from nearest neighbor set of ground-truth class prototypes

are selected from the complete dictionary of 310K labels.

This corresponds to an open set fine grained recognition; (2)

OPEN-SET1K−RND: 1000 label names randomly sampled

from 310K set. The results are shown in Fig. 2. Also note

that we did not fine-tune the word vector space (i.e., V is an

Identity matrix) on OPEN-SET310K setting since Eq (8) can

optimize a better visual discriminability only on a relative

small subset as compared with the 310K vocabulary. While

our OPEN-SET variants do not assume that test data comes

from either source/auxiliary domain or target domain, we

split the two cases to mimic SUPERVISED and ZERO-SHOT

scenarios for easier analysis.

On SUPERVISED-like setting, Fig. 2 (left), our accuracy

is better than that of SVR-Map on all the three different

label sets and at all hit rates. The better results are largely

due to the better embedding matrix W learned by enforcing

maximum margins between training class name and open

set vocabulary on source training data.

On ZERO SHOT-like setting, our method still has a no-

table advantage over that of SVR-Map method on Top-k
(k > 5) accuracy, again thanks to the better embedding

W learned by Eq. (7). However, we notice that our top-1

accuracy on ZERO SHOT-like setting is lower than SVR-

Map method. We find that our method tends to label some

instances from target data with their nearest classes from

within source label set. For example, “humpback whale”

from testing data is more likely to be labeled as “blue

whale”. However, when considering Top-k (k > 5) ac-

curacy, our method still has advantages over baselines.

4.2. Experimental results on ImageNet dataset

We further validate our findings on large-scale ImageNet

2012/2010 dataset; 1000-dimensional word2vec represen-

tation is used here since this dataset has larger number of

classes than AwA. We highlight that our results are still bet-

ter than those of two baselines – SVR-Map and SVM on

(SUPERVISED) and (ZERO-SHOT) settings respectively as

shown in Tab. 3. The open set image recognition results

are shown in Fig. 4. On both SUPERVISED-like and ZERO-

SHOT-like settings, clearly our framework still has advan-

tages over the baseline which directly matches the nearest

neighbors from the vocabulary by using predicted semantic

word vectors of each testing instance.

We note that SUPERVISED SVM results (34.61%) on Im-

ageNet are lower than 63.30% reported in [7], despite us-

Testing Classes

AwA Dataset Aux. Targ. Total Vocab

OPEN-SET1K−NN 40 / 10 1000⋆

OPEN-SET1K−RND (left) (right) 40 / 10 1000†

OPEN-SET310K 40 / 10 310K
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SVR−Map(OPEN SET − 1K−NN)

SVR−Map(OPEN SET − 1K−RND)

SVR−Map (OPEN SET − 310K)

SS-Voc:W (OPEN SET − 1K−NN)

SS-Voc:W (OPEN SET − 1K−RND)

SSoVoc:W (OPEN SET − 310K)

Figure 2. Open set recognition results on AwA dataset:

Openness=0.9839. Chance=3.2e− 4%. Ground truth label is ex-

tended for its variants. For example, we count a correct label if a

’pig’ image is labeled as ’pigs’. ⋆,†:different 1000 label settings.

ing the same features. This is because only few, 3 sam-

ples per class, are used to train our models to mimic human

performance of learning from few examples and illustrate

ability of our model to learn with little data. However, our

semi-supervised vocabulary-informed learning can improve

the recognition accuracy on all settings. On open set im-

age recognition, the performance has dropped from 37.12%
(SUPERVISED) and 8.92% (ZERO-SHOT) to around 9% and

1% respectively (Fig. 4). This drop is caused by the intrinsic

difficulty of the open set image recognition task (≈ 300×
increase in vocabulary) on a large-scale dataset. However,

our performance is still better than the SVR-Map baseline

which in turn significantly better than the chance-level.

We also evaluated our model with larger number of train-

ing instances (> 3 per class). We observe that for standard

supervised learning setting, the improvements achieved us-

ing vocabulary-informed learning tend to somewhat dimin-

ish as the number of training instances substantially grows.

With large number of training instances, the mapping be-

tween low-level image features and semantic words, g(x),
becomes better behaved and effect of additional constraints,

due to the open-vocabulary, becomes less pronounced.

Comparing to state-of-the-art on ZSL. We compare

our results to several state-of-the-art large-scale zero-shot

recognition models. Our results, SS-Voc:full, are better

than those of ConSE, DeViSE and AMP on both T-1 and

T-5 metrics with a very significant margin (improvement

over best competitor, ConSE, is 3.43 percentage points or

nearly 62% with 3, 000 training samples). Poor results of

DeViSE with 3, 000 training instances are largely due to the

inefficient learning of visual-semantic embedding matrix.

AMP algorithm also relies on the embedding matrix from

DeViSE, which explains similar poor performance of AMP
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SS-Voc: closed

SS-Voc:full :  persian_cat,  siamese_cat,  hamster,  weasel,  rabbit,  monkey,  zebra, owl, anthropomorphized, cat

SS-Voc:closed:  hamster, persian_cat, siamese_cat, rabbit, monkey, weasel, squirrel, anteater, cat, stuffed_toy

SVR-Map: hamster, squirrel, rabbit, raccoon, kitten, siamese_cat, stuffed_toy, persian_cat, ladybug, puppy

Figure 3. t-SNE visualization of AwA 10 testing classes. Please refer to Supplementary material for larger figure.

Testing Classes SS-Voc

Aux Targ. Total Vocab Chance SVM SVR closed W full

SUPERVISED X 1000 1000 0.1 33.8 25.6 34.2 36.3 37.1

ZERO-SHOT X 360 360 0.278 - 4.1 8.0 8.2 8.9

Table 3. The classification accuracy (%) of ImageNet 2012/2010 dataset on SUPERVISED and ZERO-SHOT settings.

Testing Classes

ImageNet Data Aux. Targ. Total Vocab

OPEN-SET310K (left) (right) 1000 / 360 310K
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Figure 4. Open set recognition results on ImageNet 2012/2010

dataset: Openness=0.9839. Chance=3.2e − 4%. We use the

synsets of each class— a set of synonymous (word or prhase)

terms as the ground truth names for each instance.

with 3, 000 training instances. In contrast, our SS-Voc:full

can leverage discriminative information from open vocabu-

lary and max-margin constraints, which helps improve per-

formance. For DeViSE with all ImageNet instances, we

confirm the observation in [30] that results of ConSE are

much better than those of DeViSE. Our results are a further

significant improved from ConSE.

4.3. Qualitative results of open set image recognition

t-SNE visualization of AwA 10 target testing classes is

shown in Fig. 3. We compare our SS-Voc:full with SS-

Voc:closed and SVR. We note that (1) the distributions of

10 classes obtained using SS-Voc are more centered and

more separable than those of SVR (e.g., rat, persian cat

and pig), due to the data and pairwise maximum margin

terms that help improve the generalization of g (x) learned;

(2) the distribution of different classes obtained using the

full model SS-Voc:full are also more separable than those

of SS-Voc:closed, e.g., rat, persian cat and raccoon. This

can be attributed to the addition of the open-vocabulary-

informed constraints during learning of g (x), which further

improves generalization. For example, we show an open

Methods S. Sp Feat. T-1 T-5

SS-Voc:full W CNNOverFeat 8.9/9.5 14.9/16.8

ConSE [30] W CNNOverFeat 5.5/7.8 13.1/15.5

DeViSE [14] W CNNOverFeat 3.7/5.2 11.8/12.8

AMP [19] W CNNOverFeat 3.5/6.1 10.5/13.1

Chance – – 2.78e-3 –

Table 4. ImageNet comparison to state-of-the-art on ZSL: We

compare the results of using 3, 000/all training instances for all

methods; T-1 (top 1) and T-5 (top 5) classification in % is reported.

set recognition example image of “persian cat”, which is

wrongly classified as a “hamster” by SS-Voc:closed.

Partial illustration of the embeddings learned for the Im-

ageNet2012/2010 dataset are illustrated in Figure 1, where

4 source/auxiliary and 2 target/zero-shot classes are shown.

Again better separation among classes is largely attributed

to open-set max-margin constraints introduced in our SS-

Voc:full model. Additional examples of miss-classified in-

stances are available in the supplemental material.

5. Conclusion and Future Work

This paper introduces the problem of semi-supervised

vocabulary-informed learning, by utilizing open set seman-

tic vocabulary to help train better classifiers for observed

and unobserved classes in supervised learning, ZSL and

open set image recognition settings. We formulate semi-

supervised vocabulary-informed learning in the maximum

margin framework. Extensive experimental results illus-

trate the efficacy of such learning paradigm. Strikingly, it

achieves competitive performance with only few training

instances and is relatively robust to large open set vocab-

ulary of up to 310, 000 class labels.

We rely on word2vec to transfer information between

observed and unobserved classes. In future, other linguistic

or visual semantic embeddings could be explored instead,

or in combination, as part of vocabulary-informed learning.
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