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Abstract

Image segmentation is one of the most important low-

level operation in image processing and computer vision. It

is unlikely for a single algorithm with a fixed set of param-

eters to segment various images successfully due to varia-

tions between images. However, it can be observed that the

desired segmentation boundaries are often detected more

consistently than other boundaries in the output of state-

of-the-art segmentation results. In this paper, we propose

a new approach to capture the consensus of information

from a set of segmentations generated by varying param-

eters of different algorithms. The probability of a segmen-

tation curve being present is estimated based on our proba-

bilistic image segmentation model. A connectivity probabil-

ity map is constructed and persistent segments are extracted

by applying topological persistence to the probability map.

Finally, a robust segmentation is obtained with the detec-

tion of certain segmentation curves guaranteed. The ex-

periments demonstrate our algorithm is able to consistently

capture the curves present within the segmentation set.

1. Introduction

Image segmentation is one of the most important low-

level operation in image processing and computer vision.

The existing techniques cluster the image pixels into a set

of groups visually distinct and uniform with respect to some

properties, such as gray level, texture or color [11]. There

are a variety of algorithms that have been proposed for im-

age segmentation. Grouped by their methodology, segmen-

tation algorithms can be mainly divided into these classes:

edge-based segmentations [2, 13] make use of edge infor-

mation to segment regions in an image; superpixel-based

segmentations [20, 17, 23] use superpixels as initialization

of segmentation to make use of superpixel cues and reduce

computational complexity; and graph-based segmentations
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[25, 21, 9] represent the image as a weighted undirected

graph for which the segmentation problem is treated as a

graph partitioning problem.

State-of-the-art segmentation algorithms are able to suc-

cessfully capture different features from images. However,

it is difficult for a single algorithm with the same parame-

ters to segment all the images successfully due to variations

between images. One feature that may be observed is that

when comparing the segmentation results from different al-

gorithms with different parameters, the desired boundaries

are detected more consistently than other boundaries. One

example is shown in Fig. 1 (b). The four segmentations are

generated by four different algorithms. The boundary of the

swan is detected in all the results with a small perturbation

from each other. Thus, extracting consistent detections of a

set of segmentations can give a better estimation of correct

segmentation.

In this paper, we propose a new approach to capture the

consensus segmentation information from a set of segmen-

tations generated by varying parameters of different seg-

mentation algorithms. First, the probability of a segmen-

tation curve present around a location x is estimated based

on our image segmentation model and a connectivity prob-

ability map is constructed. Then, persistent segments are

extracted by applying topological persistence to the proba-

bility map. Finally, a robust segmentation is obtained with

the guarantee of detection of certain segmentation curves.

Our approach is illustrated in Fig. 1.

The rest of the paper is organized as follows: Section 2

gives an overview of the related work; Section 3 introduces

our image segmentation model; A detailed description of

the proposed segmentation approach is introduced in Sec-

tion 4; Section 5 discusses the choice of thresholds; Exper-

iments of our method are discussed in Section 6; Finally,

section 7 summarizes the paper and discusses future scope.

2. Related Work

In this section we briefly overview the image segmenta-

tion approaches based on consensus algorithms.

In [18], the segmentation set is generated by many runs
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Figure 1. Pipeline of the proposed approach. (a) Original image. (b) Four samples from the segmentation set. The segmentation set

generated by varying parameters of four algorithms are used as an input set. (c) A connectivity probability map is constructed. (d) A

set of labeled images, which corresponds to the filtration set for the topological persistence analysis, is generated by thresholding the

connectivity probability map. (e) Persistence diagram of the filtration shown in (d) where each point in the diagram corresponds to a

connected component in the filtration. (f) Segmentation result obtained by applying two thresholds in the persistence diagram.

of a randomized segmentation algorithm. The closed con-

tours are then obtained by combining those segmentation

through consensus region merging. In [19], a consensus

segmentation algorithm applied on remotely sensed images

is introduced, using a stochastic optimization algorithm

based on the Filtered Stochastic BOEM (Best One Element

Move) method. Also, it gives a way to estimate the op-

timum number of the clusters in segmentation. An unsu-

pervised approach of consensus segmentation based on the

graph cuts using the consensus inferred from hierarchical

segmentation ensembles for partitioning images into fore-

ground and background regions is presented in [12] . In

[10], the segmentation set is used for computing a super-

pixel image, which is used to generate consensus cluster-

ing. In [22], the authors propose a bi-clustering framework

and perspective for reaching consensus in grouping prob-

lems, which can be used in consensus image segmentation.

In [16], a cluster ensemble is used to determine the number

of clusters in a group of data, which can be used to estimate

the number of regions in the segmentation.

3. Image Segmentation Model

Let Ω ⊂ R
2 be the image domain. We represent a seg-

mentation S of an image as a set X of nodes xi ∈ Ω,

and a set Γ of continuous curves γij : [0, 1] → Ω for

which γij(0) = xi and γij(1) = xj . Each curve is non-

intersecting with any curve in the set and the number of

curves incident with any point is greater than one, making

this a valid segmentation. The segmentation S has a graph-

ical structure corresponding to a planar graph G = (V,E)
where V = {1, · · · , NX}, NX is the number of nodes in

X , and E = {(i, j) | γij ∈ Γ}. We define a segmentation S
by the pair (G,Γ).

In order to define a probabilistic model for segmenta-

tions, the unknown generative model is represented as:

P [S = (G,Γ)] = P [Γ | G] · P [G]. (1)

It is assumed that the graphical structure G is obtained from

an over-segmentation of the image with corresponding set

of vertices Vo and edges Eo. First, a subset of edges E ⊂

Figure 2. Illustration of the model used for segmentations: The

representation model for a segmentation S (left) and the bounded

perturbation model around Sσ .
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Eo is selected and the vertices V ⊂ Vo corresponding to the

subgraph induced by E are chosen. We let

pij := P [(i, j) ∈ E] , (2)

which is a piece of information from this unknown distri-

bution of graphical models that will be used in our study.

The probabilities pij specify the probability of a curve seg-

ment to be present. We further assume that given a graph-

ical structure, the set of curves Γ is generated using some

process that does not violate the graphical structure (i.e., it

does not introduce intercepts between the curves).

Let us define Gσ as the graph obtained by selecting the

set of edges Eσ = {(i, j) ∈ Eo | pij > σ} and correspond-

ing nodes Vσ . We assume that there exist constants δ and an

associated set Γσ of curves γσ
ij that satisfy

|γij − γσ
ij |∞ ≤ δ for all (i, j) ∈ Eσ ∩ E (3)

for any segmentation with graphical structure G = (V,E),
where |f1 − f2|∞ = sups∈[0,1] ||f1(s) − f2(s)||2. This

assumption requires the set of realizations of a given curve

γij to be concentrated within a band of radius δ around the

curve γσ,δ
ij . We define Sσ = (Gσ,Γσ).

Our objective is to come up with a procedure and a

set of conditions under which the segmentation Sσ can

be estimated. In particular, we introduce a procedure un-

der which we can construct a subset C ⊂ Ω such that

im(Sσ) ⊂ C, where im(Sσ) =
⋃

(i,j)∈Eσ
im(γσ

ij) and

im(γσ
ij) =

{

x = γσ
ij(s) ∈ Ω | s ∈ [0, 1]

}

.

Let Dδ : Ω → [0, 1] be the function that measures the

probability of having a segmentation overlapping with a ball

Bδ(x) of radius δ centered at a point x. That is,

Dδ(x) := P [im(S) ∩Bδ(x) 6= ∅] . (4)

Theorem 1. The set C = {x |Dδ(x) ≥ σ} satisfies:

im(Sσ) ⊂ C (5)

and

im(Sσ)
c ⊖B2δ ⊂ Cc, (6)

where Cc is the complement of set C in Ω, B2δ is the ball

of radius 2δ and ⊖ operator is the morphological erosion

operator.

Proof. For the first inequality it is sufficient to show that

every point in Sσ has Dδ(x) ≥ σ. Let x ∈ im(Sσ). Then,

we have that given (i, j) ∈ E then Bδ(x) will intersect with

im(γij) due to Eqn 3. Noting that (i, j) ∈ E with probabil-

ity greater that σ (by definition of Sσ) then Dδ(x) ≥ σ.

For the second inequality, we note that any point x that is

more than 2δ from im(Sσ) has Dδ(x) = 0 since no curves

will intersect with the ball Bδ(x).

4. Approach

In this section, we describe our approach in detail. We

use the connectivity of an n×n patch to construct a discon-

nection probability map D∗
n(x). Then we discuss how the

size n of the patch affects the quality of the model approxi-

mation. The size of the patch is a parameter associated with

the perturbation bound δ in our model.

4.1. Boundary characterization

Given a set of segmentations {Sk, k = 1, . . . ,K} gener-

ated by different segmentation algorithms with different pa-

rameters, we assume that the segment curves appearing in

the set satisfy the probabilistic model we define in Section 3.

That is, each segment curve in the segmentation results cor-

responds to an edge (i, j) ∈ Eo of the over-segmentation.

In a segmentation Sk, an n × n patch N(x) centered at

x is called connected if all the pixels in the patch have the

same label. Then the number of times it is disconnected

over the set {Sk}, Cdis
n , counts how many times one or

more segment curves appear within that patch. As shown

in Fig. 3, a large patch may capture more than one edge

in Eo, while too small of a patch may miss some parts of

the segment curves in Eo. Based on our model, we have

D∗
n(x) = Cdis

n /K as an estimate for Dδ(x). We assume

that segment curves of the desired segmentation boundary

are more consistent than undesired ones in set {Sk} with a

small perturbation around the correct boundary. Therefore,

high values of Dδ(x) indicate the high confidence of a seg-

ment curve corresponding to (i, j) ∈ Eo along the patch in

the groundtruth.

When applying a threshold σ, then a labeled image

L(n, σ) is obtained by computing the connected compo-

nents of the set Ln
σ = {x |D∗

n(x) ≤ σ}. Changing σ from

σmin = 0 to σmax ≤ 1 produces a set of labeled image

{L(n, σ)}σ∈[0,σmax]. The connected components appear-

ing at high σ values indicate high probability of segment

curves between them. One example of the labeled image

set is shown in Fig. 6 (i)-(l).

4.2. Choice of Parameter n

As mentioned in Section 4.1, the quality of approxima-

tion of the segmentation model depends on the parameter

n. As shown in Fig. 6 (i)-(l), the connected components get

larger and merged as σ increases. Two connected compo-

nents will merge under a certain σ if there is a path of over-

lapped patches connecting them. If γij for (i, j) ∈ Eo is

present between the two connected components with prob-

ability pij , then pij can be approximated by the minimum

valued of σ that merges the two connected components.

In order to analyze the effect on the choice of the param-

eter n, consider an image with two segments separated by

a soft vertical edge. Assume γij for (i, j) ∈ Eo is present
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Figure 3. Example of segment curves captured by patches. (a)

An image with a soft edge and a sharp edge. (b)-(d) show three

possible segmentation results. Red lines are the detected segment

curves. (b) The large brown patch covers two segment curves. The

present probability of neither edge can be measured correctly by

the patch of that size. The smaller blue patch is a suitable choice.

(c)-(d) The small green patch cannot cover all the segment curves

of the soft edge, which makes it have lower disconnection prob-

ability than the actual value, whereas the blue patch is a suitable

choice since it covers all the possible positions of the curves.

within a range of 2δ pixels with probability pij (i.e., a dis-

tance of δ from its centerline). Finding the minimum value

of σ that captures the separation between opposite sides of

the regions separated by γij requires a value of n that is

big enough for this purpose. For the case n − 2 ≥ 2δ,

the range of variations of the segments can be covered by

a single n × n patch as shown in Fig. 4 (a). The pixel

x in the middle of the range has the disconnection proba-

bility D∗
n(x) = pij . The minimum probability threshold

that makes the two segments connected is σ = pij . For

the case n − 2 < 2δ, a single n × n patch cannot cover

the entire range, which makes the disconnection probabil-

ity D∗
n(x) < pij . Note that the cross-sectional range can

be covered by m = [ 2δ+1
n−1 ] patches overlapping with one

pixel, where [a] is the minimum integer greater or equal to

a. Fig. 4 (b) shows one example of this case. Let pkd be

the disconnected probability of k-th patch. The disconnec-

tion probabilities satisfy
∑m

k=1 p
k
d = pij , where the sum

is over the patches. There exists at least one pixel x along

the cross-sectional line for the range of variation of γij with

D∗
n(x) ≥ pij/m. The probability threshold that ensures

that the two segments are disconnected is σ < pij/m. Thus,

if n is chosen large enough, say n−2 ≥ 2δ, then (i, j) ∈ Eo

with γij appearing within range 2δ in the set {Sk} with

probability pij will be represented in all the labeled images

with σ < pij . For (i, j) ∈ Eo with range 2δ > n − 2, they

Figure 4. Illustration of the effect of the choice of n. Vertical dash

lines with the same color indicate the variation regions of one seg-

ment curve γ. (a) The case of n − 2 ≥ 2δ. The variation region

can be covered by one patch. (b) The case of n−2 < 2δ. The vari-

ation region can be covered by four patches in this example. (c)

The case of closed segment curves influence the approximation.

will be represented in the label image with σ < σ′, where

pij/m ≤ σ′ < pij and m = [ 2δ+1
n−1 ].

Let us consider another case corresponding to two seg-

ment curves γij and γi′j′ where (i, j) and (i′, j′) ∈ Eo are

close to each other. An example is shown in Fig. 4 (c). The

red dash lines represent the range for γij and the green is for

γi′ j′ . Assume that, when γi′ j′ is not present, D∗
n(x) = σ0

where x is the center of right patch in the figure and σ0 is

the minimum σ making the two segments separated by red

curve merge. After adding γi′ j′ , the probability of having a

disconnected set increases, since γi′ j′ is present in the area

covered by the right patch. That is, D∗
n(x) > σ0. Therefore,

γi′ j′ near γij may make the minimum connection threshold

for γij greater than its actual value. For an n×n patch, seg-

ment curves which have perturbation regions with ranges

that are at least n − 1 pixels away from each other can be

identified without the influence of other segment curves.

5. Thresholding

In the set of labeled images {L(n, σ)}σ∈[0,σmax], the

connected components get larger and merged with other

connected components as σ increases. To estimate the seg-

mentation Sσ , we extract the connected components by ap-

plying a threshold σ on D∗
n(x) as well as selecting only

those regions that have a topological persistence greater

than τ . This last step ensures that regions that are possi-

bly generated by errors in the estimation of Dδ(x) are not

considered.

5.1. Disconnection Threshold σ

The threshold σ is used to get the segment curve γij with

probability pij ≥ σ. As discussed in Section 4.2, the qual-

ity of the approximation of the segmentation model is based

on the size n of patch. In order to capture all the segment

curves that are present with probability greater than pij ,

given that we only care about the curves appearing within

a range 2δ ≤ n − 2, we can set the threshold σ = pij .

If we consider the curves that appear within a larger range
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2δ > n − 2, the threshold should be σ = pij/m, where

m = [ 2δ+1
n−1 ].

5.2. Persistence Threshold τ

If a single value of σ is used for thresholding, the

segment curves are estimated by only one labeled image

L(n, σ) and we throw out the information of other labeled

images in the set. Also, the ideal value of pij and δ to get

a reasonable segmentation may be different due to the vari-

ations of the image quality over the dataset. Images with

blurred edges require large δ and low pij while images with

sharp edges require small δ and have high pij . Furthermore,

the connected components we want to extract correspond to

the peaks of the connectivity probability map 1−D∗
n, sim-

ply thresholding D∗
n may not capture all the desired regions.

To address this, we apply topological persistence to gener-

ate more robust segmentation estimation. This technique

has been used in some previous works [24, 3] to get the

robust obstacle segmentation from stereo pairs. In this sec-

tion, we briefly introduce the concept of topological persis-

tence and discuss how it applies to our image segmentation

process. A comprehensive review of topological persistence

can be found in [7].

5.2.1 Background

Consider a function f : R
2 → [0, 1] defined over a 2D

domain. Given a threshold value σ ∈ [0, 1], the upper level

set of f is defined as Eσ = f−1[1 − σ, 1]. The set Eσ =
f−1[1− σ, 1] is a filtration and satisfies:

Eσ1
⊆ Eσ2

whenever σ1 ≤ σ2. (7)

Persistent homology [6] focuses on connected components

during the filtration of upper level sets of f .

The topological features for our application are the con-

nected components in set Eσ , and each is summarized by

the appearance and disappearance (i.e. merging with other

connected components) of a connected component during a

filtration; this is referred to as the birth (bk) and death (dk)

times of the k-th feature, respectively. Each feature can be

encoded by a point (bk, dk) and the diagram with all fea-

tures represented as a set of point is called persistence dia-

gram. The persistence interval of k-th feature is measured

by dk − bk.

Fig. 5 shows an example of such function f . At σ =
0.15, there exists two connected components. A small con-

nected component is born at σ = 0.25. When σ = 0.35,

the one born at σ = 0.25 dies because it merges with an-

other connected component which has an earlier birth time,

leading to a persistence interval of length 0.1. At σ = 0.6,

all connected components merge to the biggest one. All

the connected components die at this time except the one

having the earliest birth time. A persistence diagram which

Figure 5. Persistence analysis. (a) Original image. (b) Image after

thresholding. (c) Persistence Diagram.

encodes the birth and death time of each region can be used

to select the persistent region. The diagram corresponding

to this example is shown in Fig. 5 (c). The further away a

feature is from the diagonal the higher is its persistence and

robustness to perturbations.

5.2.2 Extract Persistence Connected Components

In order to extract the persistent connected components for

our segmentation process, we first define a connection prob-

ability map f(x) = 1−D∗
n(x). Then, the labeled image set

{L(n, σ)}σ∈[0,σmax] form a filtration of the upper level set

of f . Fig. 6 (g) shows the persistence diagram extracted

from the filtration shown in Fig. 6 (i)-(l). Only the regions

with persistence intervals greater than τ are kept to avoid

the connected components generated by noise in the seg-

mentation set {Sk}. This threshold is illustrated by a blue

dash line parallel to the diagonal in Fig. 6 (g). The size of

each region above the persistence threshold can vary, since

it exists over a range of τ . To get the largest size of the

persistence region, the largest set of points which is asso-

ciated with its death time is selected as the segmentation

result [24].

One advantage of the persistence diagram is its stabil-

ity property [4]. Small changes in the function f lead to

small changes in the persistence diagram. This translates

into the following for our scenario: we can obtain segmen-

tation result that is robust to parameter value changes and

small variations in the segmentation set {Sk}.

To make sure the segment curves γij present with prob-

ability greater than pij within a range 2δ ≤ n − 2 can be

captured, we can set σmax = pij . This ensures that regions

with death after pij will never merge with other regions in

filtration {L(n, σ)}σ∈[0,pij ]. This threshold is shown as the

horizontal blue dash line in Fig. 6 (g). This is equivalent

to removing the labeled images with σ > pij from the fil-

tration. For this new diagram, the connected components

separated by those segment curves will never get merged in

the filtration and will be present in the final segmentation

result. Note that this is not the same as simply thresholding

f(x) = 1 −D∗
n(x) by σ = pij , which will remove the re-

gions with death before σ as well as those that are born after

σ.
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6. Experiment

The proposed approach is implemented in MATLAB.

We use images from the Berkeley Segmentation Database

[15, 1] to test our algorithm. There are five groundtruth seg-

mentations per image labeled by different human subjects.

We adapt the segmentation coverage score defined in [1]

to evaluate the segmentation result. The overlap score be-

tween regions R and R′ is defined as

O(R,R′) =
|R ∩R′|

|R ∪R′|
, (8)

where |R| is the area of R. The covering of a segmentation

groundtruth Sr by a segmentation S ′ is defined as:

C(S ′ → Sr) =
1

N

∑

R∈Sr

|R| max
R′∈S′

O(R,R′), (9)

where N is the number of pixels in the image. To com-

bine the information of five groundtruth segmentations, the

covering score for segmentation S ′ is defined by

C(S′) =
1

5

5
∑

k=1

C(S ′ → Sk
r ) (10)

where Sk
r is the k-th groundtruth segmentation.

6.1. Generation of Segmentation Set

We use segmentation results generated by four algo-

rithms as our input. These four algorithms are SAS [14],

Normalized Cuts [21], Graph-based segmentation [8] and

Mean Shift [5]. The first two algorithms require the number

of regions in the segmentation result as an input parameter.

We get 26 segmentations from each of these two algorithms

by varying the number of regions from 5 to 30. The Graph-

based segmentation uses a Gaussian with standard deviation

σ to remove the digitization artifacts and a parameter k to

control the scale of observation which affects the size of the

segments. We vary σ from 0.4 to 0.8 with step size 0.1 and

k from 500 to 5000 with step size 100 to generate 230 seg-

mentations. For Mean Shift, we generate 238 segmentations

by changing the spatial search window size and bandwidth

of the search window from 2 to 15 with step size 1, and

from 7 to 15 with step size 0.5, respectively. These range of

parameters were chosen because they generate reasonable

but different segmentations for most of the test images.

When computing the disconnection probability map D∗
n,

we first compute D∗
n,i where i = 1, 2, 3, 4 for the i-th al-

gorithm and D∗
n is obtained by taking the average of the

D∗
n,i. This process equally weights the contribution from

each algorithm.

6.2. Results

In our experiment, we use n = 5 as the patch size. The

filtration is generated by varying σ ∈ [0, σmax] with step

size 0.05. The thresholds we use are σmax = 0.8 and

τ = 0.4. Fig. 6 shows one segmentation result of the pro-

posed approach. Fig. 6 (a)-(d) shows the best segmentation

results in the segmentation set of the four algorithms men-

tioned in Section 6.1 based on the covering score. As we

can see, the result of the best score, 0.92, has some small

noisy regions and it is not visually better than the result of

SAS with score 0.90. This leads us to believe that the cov-

ering score may not be the best evaluation metric in this

scenario. As a future work, better metrics will need to be

identified to better quantify the quality of a segmentation.

Fig. 6 (f) shows the connectivity probability map 1−D∗
n.

Darker color indicates the lower connection probability of

those regions. We note that this map properly captures the

contours of the hawk and the branch by assigning them a

low connection probability. The locations with high con-

nection probabilities correspond mostly to undesired seg-

mentation curves.

Fig. 6 (i)-(l) show the labeled images for σ =
0, 0.25, 0.5, 0.8. For low σ, most of the segment curves ap-

pearing in the input segmentation set are captured. How-

ever, when σ increases from 0.25 to 0.5, the undesired seg-

mentation curves are removed. For σmax = 0.8, almost all

the remaining segment curves are visually correct.

Fig. 6 (g) shows the persistence diagram of the con-

nected components during filtration. The thresholds are

σmax = 0.8 and τ = 0.4. Connected components corre-

sponding to the points in the blue region are selected as our

segmentation result. Since the size of persistent connected

components can vary in a range of τ , we select the set of

points associated with the death time as the segmentation

result. This maximizes the size of the k-th persistent region

and captures the curves with probability greater than 0.8.

Fig. 6 (h) shows our segmentation result. Each region

is colored by its average value in the region. Since the cov-

ering set that we built is not an actual segmentation, we re-

cover a segmentation by extracting the skeleton of the cov-

ering set, which is shown in green in the image. It is ob-

served that this approach maintains the segmentation curves

that are visually desirable.

Fig. 7 shows more results of our proposed approach,

which is able to extract the segment curves that appear with

high probability in the input segmentation set. The covering

score of the proposed approach is not better than the best

score in the segmentation set. One reason for this is that

the results have some unlabeled regions. However, the pro-

posed approach tends to segment single object into smaller

number of regions which may be divided into more regions

by the base approaches. This is because the edges are ran-

domly detected inside an object due to the similarity within
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Figure 6. (a)-(d) Results with best covering score for base segmentation approaches in the input segmentation set: SAS [14], Normalized

Cuts [21], Graph-based segmentation [8] and Mean Shift [5]. (e) Original image. (f) Connection probability map. (g) Persistence diagram

of the connected components during filtration. The thresholds are σmax = 0.8 and τ = 0.4. (h) Our segmentation result. The green

curves are the skeleton of the regions without label. (i)-(l) Filtration with σ = 0, 0.25, 0.5, 0.8. With σ increasing, the regions separated

by segment curves with low probability are merged early.

Figure 7. Best segmentation results of the four base-algorithms in the segmentation set and result of proposed algorithm. Left to right:

Original image, SAS [14], Normalized Cuts[21], Graph-based segmentation [8], Mean Shift [5], connection probability map, and proposed

algorithm.

the region of that object. For the same reason, we can re-

move the curves generated in the background. However,

if an undesired curve is always detected by all the algo-

rithms, our approach will fail since our model assumes that

frequently detected curves are valid segmentation curve.

7. Conclusion

In this paper, we propose a new approach to capture

the consensus segmentation information from a set of seg-

mentations generated by varying parameters of different al-

gorithms. The probability of a segmentation curve being
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present is estimated based on our probabilistic image seg-

mentation model. A connection probability map is con-

structed to characterize the segmentation curves with high

probability. Then, persistence segments are extracted by ap-

plying topological persistence to the probability map. Fi-

nally, a robust segmentation is obtained with the detec-

tion of certain segmentation curves guaranteed. The ex-

periments demonstrate our algorithm is able to capture the

curves present consistently within the segmentation set.

In the future, we will extend our model and approach

by considering multiple neighborhoods of size n × n (i.e.,

treating n as another parameter). Also, we hope to improve

the segmentation result by identifying ways to select an ap-

propriate range of parameters for the base segmentation al-

gorithms, and a good estimate for the persistence threshold

τ via training using user-input.
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