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Abstract

In this paper, we introduce a novel framework for video-

based action recognition, which incorporates the sequen-

tial information with the spatiotemporal features. Specif-

ically, the spatiotemporal features are extracted from the

sliced clips of videos, and then a recurrent neural network

is applied to embed the sequential information into the final

feature representation of the video. In contrast to most cur-

rent deep learning methods for the video-based tasks, our

framework incorporates both long-term dependencies and

spatiotemporal information of the clips in the video. To ex-

tract the spatiotemporal features from the clips, both dense

trajectories (DT) and a newly proposed 3D neural network,

C3D, are applied in our experiments. Our proposed frame-

work is evaluated on the benchmark datasets of UCF101

and HMDB51, and achieves comparable performance com-

pared with the state-of-the-art results.

1. Introduction

Nowadays, there are overwhelming images and videos

on the Internet, which draws more and more attentions

about how to make use of them in various tasks of com-

puter vision. Thanks to many innovative techniques, such

as crowdsourcing, some large scale datasets are organized

from chaotic pools, e.g. ImageNet [3] and Sport1M [12],

which largely facilitate a lot of research work in computer

vision. However, traditional methods usually cannot fully

take advantage of large scale datasets, and have difficulties

for transferring learned knowledge from one dataset to an-

other. Since the seminal paper [13] which makes use of

the powerful computation ability of GPUs, deep neural net-

works (DNNs) have enjoyed a renaissance in various top-

ics of computer vision, such as image classification[22, 6],

Figure 1. Proposed hybrid action recognition framework. (a)

Video clips sliced with a fixed length. (b) Extracting spatiotem-

poral features from each video clip. (c) Learning sequential infor-

mation of these clips through the LSTM model. (d) The feature

sequence corresponding to the input clips respectively.

object detection [7, 8], image description [5, 11], and etc.

With carefully designed structures, DNNs can learn general

and discriminative models from large scale datasets. More-

over, DNNs can propagate the knowledge learned from one

dataset to another by a finetune process, which renders

DNNs the ability to utilize the information learned from

large scale sources to tackle the problems in relatively small

datasets.

Convolutional neural networks [16] (CNNs) are specific

DNN structures, which have enjoyed great success in many

image-based tasks. Many endeavors have been made to

extend CNNs to the video domain. However, this task is
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difficult mainly due to three major problems: 1) The vol-

ume of video data is much bigger than image. How to ef-

ficiently handle video data in the limited GPU memory is

not tractable. 2) Compared to two dimensional image data,

videos have additional temporal dimension. It is impor-

tant to take into account the temporal information, but most

CNN techniques are only image-based. 3) Videos contain

different number of frames. Unlike the images, for which a

simple resizing process can transform them into a uniform

size, video interpolation or extrapolation process may lose

important temporal information about the video.

In addition to CNNs, recurrent neural networks (RNNs)

have also been applied to many computer vision tasks. One

of the major attributes of RNNs is that they can preserve or

discard information based on long term memories, which

enables them to take into account the sequential dependen-

cies of the inputs. Another advantage of RNNs is their abil-

ity to handle inputs with variant lengths. Despite all the

merits presented above, there is a significant limitation in

the structure of RNNs, which is how to back propagate er-

ror information in a long range to update weights in layers.

Many versions of RNNs have been proposed to alleviate

this problem, among them the long short term machine [9]

(LSTM) is one of the most popular.

In this paper, we propose a novel hybrid framework,

which combines RNNs with extracted spatiotemporal fea-

tures, for action recognition task. As illustrated by Fig-

ure 1, the input of our proposed framework is a sequence

of sliced clips. Then the spatiotemporal features are ex-

tracted from each clip. After that the LSTMs are applied

to learn sequential information among these clips. Finally,

a sequence of output is produced corresponding to the se-

quence of video clips in the input. Our framework is similar

to [5], which is the pioneering work to integrate CNNs with

RNNs. However, their work is frame-based and only takes

into account the sequential information of the frames. Our

framework, which combines extracted spatiotemporal fea-

tures with RNNs, can model both the spatiotemporal infor-

mation of the sliced clips and the sequential characteristics

of these clips in the whole video.

For the algorithms of extracting spatiotemporal features

from the sliced clips, both dense trajectories [24] and C3D

[23] are incorporated in our system. The dense trajecto-

ries are produced by tracking the interested points, and the

spatiotemporal features are extracted along each trajectory.

Compared with the algorithm of dense trajectories, C3D is

a newly proposed model which constructs a 3D convolu-

tional neural network to learn the spatiotemporal features

from each video clip.

The contributions of our paper are three folds. Firstly,

by integrating spatiotemporal features with LSTMs, the se-

quential information of the sliced clips can be modeled,

which improves the discriminative power of the final feature

representations of the videos. Secondly, because the input

of our framework is a sequence of sliced clips, the whole

video can be easily presented in a relatively short sequence,

which makes our algorithm very efficient when comes to

long videos. Finally, an extensive analysis of the influence

of sequential length and step size for RNNs to handle vari-

able lengths of inputs is studied.

The rest of the paper is organized as follows. Section 2

introduces related work about action recognition and tech-

niques of deep learning in the video-based applications.

Section 3 provides detailed background information of this

paper. Specifically, Section 3.1 provides a brief introduction

of the LSTM and the dense trajectories and C3D methods

implemented in our framework for extracting the spatiotem-

poral features are discussed in Sections 3.2 and 3.3 respec-

tively. The details of our proposed framework are illustrated

in the Section 4. Section 5 demonstrates the experimen-

tal results of our framework conducted on the benchmark

datasets: UCF101 and HMDB51. Finally, conclusions are

presented in the Section 6.

2. Related work

In general, an action recognition framework comprises

four major components: feature extraction, feature encod-

ing, pooling and normalization, and classification. The fea-

ture extraction is to locate distinct interested points or tra-

jectories in videos and obtain their descriptors based on the

appearance and motion information around them. The crite-

ria of how to distinguish those interested points or trajecto-

ries are manually defined. The feature encoding is to encode

generated features into feature representations. The com-

mon encoding algorithms for action recognition are bag-

of-visual words (BOV) and Fisher Vector (FV). BOV en-

tails codebook vocabularies usually computed by the K-

means algorithm, and then the extracted features are as-

signed to the correspondent clusters. Fisher Vector incor-

porates Gaussian Mixture Models (GMMs) to encode each

extracted feature. For the pooling and normalization com-

ponent, the encoded features are aggregated into one fea-

ture representation for each video. For classification, vari-

ous methods have been applied based on the characteristics

of the generated features.

By extending the Harris corner detector to the 3D do-

main, Laptev and Lindeberg proposed the STIPs [15] by

extracting sparse interest points in the space-time domain.

Based on this idea, many other algorithms [2, 4, 27] have

been proposed. Instead of extracting sparse points in videos,

Wang et al. [25] first introduced improved dense trajec-

tories and the corresponding descriptors around the tra-

jectories to tackle the action recognition task. Recently,

[26] proposed a novel algorithm to integrate detected tra-

jectories with CNN learned features. Although some inter-

ested points or trajectories and their corresponding descrip-
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Figure 2. Illustration of recurrent neural networks (RNNs). The

right side is the unrolled equivalent of the left side. This chain-like

structure indicates that the sequential information can be modelled

by RNNs.

tors have very good performance on most benchmark ac-

tion recognition datasets, the appealing attributes of DNNs

propel researchers to design efficient and effective DNN

structures to perform action recognition tasks on large scale

datasets.

An intuitive way to extend image-based CNN structures

to the video domain is to perform the finetune and classifica-

tion process on each frame independently, and then conduct

a later fusion, such as average scoring, to predict the action

class of the video. Despite of its simple implementation,

this method achieves comparable results to many carefully

designed algorithms. To incorporate temporal information

in the video, [20] introduces a two-stream framework. One

stream is based on RGB images and the other is based on

the stacked optical flows. Although this work proposes an

innovative way to learn temporal information using CNN

structure, in essence it is still image-based since the third di-

mension of stacked optical flows collapses immediately af-

ter the first convolutional layer. 3D CNN structure [10] pro-

vides another perspective to apply deep learning techniques

to video-based tasks. Instead of sticking to the 2D convolu-

tional operations, temporal information can be learned from

the 3D convolutions with both spatial and temporal stride.

The C3D model is proposed based on this idea. Because

of the limited GPU computing resources, instead of taking

the whole video as the input, the C3D model only operates

on the sliced clips with fixed length, and later fusion meth-

ods are performed to obtain the final category of the entire

video. This compromised implementation trick may neglect

the sequential dependencies of those isolated clips.

As described previously, RNNs can handle inputs with

variable lengths. Both [17] and [5] propose to input CNN

features of each frame into RNN structures and achieve

good results. The former one emphasizes the pooling strate-

gies and how to fuse different features, while the latter put

more attention on how to train an end-to-end DNN struc-

ture that integrates CNNs with RNNs. To overcome the

shortcoming of RNNs that the error is hard to back prop-

agate in the long range, both algorithms choose LSTM as

the RNN structure. The function of RNNs can be viewed as

embedding sequential information into the input sequence.

Figure 3. Illustration of the LSTM memory unit implemented in

our framework. The meanings of symbols in the figure are demon-

strated in equations (1) - (6).

Therefore the intention of both [17] and [5] is to explore

the sequential information of the independent frames. This

approach neglects the spatiotemporal attributes within the

video, and to complement this shortcoming both studies ap-

ply optical flow information as an additional channel and

performs a later fusion on these two channels. As demon-

strated in both studies, by fusing the optical flow informa-

tion the accuracy of action recognition can be significantly

improved. This phenomenon indicates that the discrimina-

tive power of feature representations of videos can be im-

proved by combining the sequential and spatiotemporal in-

formation.

Inspired by the above observation, we propose a

spatiotemporal-LSTM hybrid framework for action recog-

nition which takes advantage of both spatiotemporal fea-

tures and LSTMs. Specifically, both dense trajectories and

C3D are utilized in our framework to extract spatiotemporal

features of sliced clips. Then the extracted spatiotemporal

features are fed into the LSTM model to learn sequential in-

formation between these features. The experimental results

demonstrate that by incorporating both spatiotemporal and

sequential information, the performance can be improved.

3. Background

In this section, three important components in our pro-

posed framework are introduced briefly: LSTM, dense tra-

jectories and C3D.

3.1. LSTM

Before being applied to the vision tasks, recurrent neural

networks have succeeded in the area of speech recognition,

machine translation, and etc. One of the most notable ad-

vantages of RNNs is to handle inputs with variant lengths.

A simple diagram of RNN model is illustrated in the Fig-

ure 2. This diagram shows that the RNN structures can

model the sequential information of the inputs. The ini-

tial models of RNNs have a common problem about back

39



propagating errors to update layers in the long range. In the

paper [9], LSTM is introduced to alleviate this problem.

LSTM has the ability to preserve or discard information

by carefully designed gate mechanisms. The illustration of

LSTM memory unit is showed in the Figure 3. The follow-

ing formulas demonstrate how the hidden layer (output of

the LSTM memory unit) is computed:

ft = σ(Wfhht−1 +Wfxxt + bf ) (1)

it = σ(Wihht−1 +Wixxt + bi) (2)

C̃t = tanh(Wchht−1 +Wcxxt + bc) (3)

Ct = ft ⊗ Ct−1 ⊕ it ⊗ C̃t (4)

ot = σ(Wohht−1 +Woxxt + bo) (5)

ht = ot ⊗ tanh(Ct) (6)

In the above equations, W∗ denotes the weight matrix

of the corresponding layer and b∗ is the bias vector. In our

implementation, all bias vectors are set to 0, and therefore

the weight matrices are the only parameters to be learned.

σ(x) = (1+e−x)−1 represents the sigmoid function, which

squashes each element of the input vector into the range

[0, 1]. tanh(x) = ex−e−x

ex+e−x
is the hyperbolic tangent func-

tion, which makes sure that every element of the output vec-

tor falls in the range [−1, 1]. Eq. (1) describes the behavior

of the forget gate layer, which dictates which elements in

the input vectors, ht−1 and xt, should be preserved. The in-

put gate layer is simulated by Eq.(2), which decides which

values in the newly created vector, described by Eq. (3),

should be updated. The update process is showed in Eq.

(4). Eq. (5) presents the output layer in the LSTM memory

unit, which dictates which elements of the vector output by

Eq. (6) should be kept in the hidden layer ht.

As demonstrated by the above procedures, LSTM inte-

grates many carefully designed gate layers to make the de-

cision about whether keeping or ignoring specific elements

of input vectors. Moreover, the uppermost line in the Fig-

ure 3 represents the cell state, which preserves the learned

sequential information during the whole process.

3.2. Dense Trajectories

The algorithm of dense trajectories is proposed by Wang

et al. [25]. Firstly, the interested points are located in each

frame by the methods introduced in the paper [19] on a set

of different scales. Then these points are tracked through a

fixed number of frames, which produce a trajectory for each

corresponding interest point. These trajectories are pruned

by a set of criteria, e.g. variance.

Along each resulting trajectory, a descriptor is gener-

ated based on both spatial and temporal attributes around

that trajectory. Specifically, the neighborhood around each

trajectory is split into spatiotemporal cells. As shown in

Figure 4. Illustration of trajectory-aligned descriptors. A tube

around each trajectory is split into spatiotemporal cells with com-

puted features of histogram of gradient (HOG), histogram of opti-

cal flow (HOF) and motion boundary histogram (MBH).

Figure 4, in each cell, the histogram of gradient (HOG),

histogram of optical flow (HOF) and motion boundary his-

togram (MBH) are calculated. After that, BOV is utilized

in our experiments to encode trajectory descriptors.

3.3. C3D

The C3D [23] is a newly developed 3D convolutional

neural network structure. It slices the whole video into fixed

length clips, and then conducts the finetune and classifica-

tion processes on these clips independently.

In the 2D CNNs, the dimension of each feature map is

n × h × w, where n stands for the number of filters in the

corresponding convolutional layer, h and w represents the

height and width of the feature map. The spatial size of the

filter in the 2D convolutional process is defined manually,

while the third dimension is automatically set to the value

of the first dimension of the feature maps in the previous

layer, which is also the number of filters in that layer.

In the 3D CNNs, the dimension of the feature maps pro-

duced by each convolutional layer is n×l×h×w, where the

additional parameter l stands for the number of frames. For

the 3D filters in the 3D convolutional process, in addition to

the spatial size, temporal length should also be set manually.

The fourth dimension of the 3D filter is also automatically

set to the first dimension of the feature maps in the previ-

ous convolutional layer. Figure 5 illustrates the 3D convo-

lutional process in the C3D method. Moreover, instead of

only pooling on the spatial domain, the pooling processes

in the 3D CNNs pool the features in a small cuboid. Please

note that if the temporal lengths of all 3D pooling layers are

set to 2, then the number of 3D pooling layers in the 3D

CNN structure should be log2n, where n is the length of

sliced clips. After all the convolutional processes, a feature

vector is generated and then fed into the fully connected

layers. As observed from Table 1, the network structure in
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layer conv1a pool1 conv2a pool2 conv3a conv3b pool3 conv4a conv4b pool4 conv5a conv5b pool5 fc6 fc7

size 3× 3× 3 1× 2× 2 3× 3× 3 2× 2× 2 3× 3× 3 3× 3× 3 2× 2× 2 3× 3× 3 3× 3× 3 2× 2× 2 3× 3× 3 3× 3× 3 2× 2× 2 - -

spatial stride 1 2 1 2 1 1 2 1 1 2 1 1 2 - -

temporal stride 1 1 1 2 1 1 2 1 1 2 1 1 2 - -

channel number 64 64 128 128 256 256 256 512 512 512 512 512 512 4096 4096

Table 1. The network architecture in the C3D model.

Figure 5. Illustration of the 3D convolutional process in the C3D

algorithm. Different color cuboids represent different 3D filter ker-

nels.

C3D has 8 convolutional layers, 5 max-pooling layers, and

2 fully connected layers. The sizes of all 3D convolutional

kernels are 3 × 3 × 3, and the stride of these kernels are

all 1 in both spatial and temporal domain. The sizes of all

pooling kernels are 2×2×2, except for the first one, which

is 1× 2× 2.

Due to the limitation of GPU computing resources, the

C3D model only operates on the video clips with fixed

length. Although by conducting later fusion on these clips,

comparable results can be achieved, important sequential

information between sliced clips is neglected.

4. Spatiotemporal-LSTM hybrid framework

Based on the above discussion, we propose the

spatiotemporal-LSTM hybrid framework, which can cap-

ture both spatiotemporal and sequential information of

sliced video clips.

In our proposed framework, the video is sliced into fixed

length clips, from which spatiotemporal features are ex-

tracted. After that these features are fed into the LSTM

model to embed the sequential information to the final video

representation.

For the spatiotemporal feature extractor, two algorithms

are applied in our framework. The first is the dense trajec-

tories (DT) algorithm, which is one of the state-of-the-art

traditional methods for action recognition. Another is the

C3D model which is a newly proposed deep learning tech-

nique for action classification. As demonstrated in the ex-

periments, by concatenating the features generated by the

DT algorithm and the C3D model, the performance can be

improved. This phenomenon is consistent with the experi-

mental results reported in the paper [23], in which by fusing

the features generated by the improved dense trajectories

(iDT) algorithm[25] and the C3D model, better accuracy of

action recognition can be achieved.

In our implementation, the dense trajectories algorithm

is utilized instead of iDT, since iDT entails the results of

human detections before extracting trajectories from the

video. Compared with the original version of dense trajec-

tories algorithm, two modifications have been made in our

framework. First, to be consistent with the clip length in the

C3D model, the trajectory length is changed to 16. Second,

to generate the optical flows, we apply the Epicflow [18],

which is one of the state-of-the-art optical flow generating

algorithms. To make the dimension of the encoded feature

representation to be consistent with the one produced by the

C3D model, BOV is implemented instead of Fisher Vector.

In addition to train a C3D network on the RGB frames

of videos, we also train a motion C3D network on the opti-

cal flow images. The optical flow images are generated by

stacking the x-component, the y-component and the magni-

tude of the flow on three channels respectively. Each ele-

ment in the image is then multiplied by 16 and converted

to the closest integer between 0 and 255. This practice

has demonstrated good performance in many other studies

[5, 17]. As observed in the experimental results, by fusing

the features generated by both RGB and motion C3D mod-

els, the performance can be improved, which indicates that

complementary information is provided by training deep

neural networks on the optical flow channels.

The features extracted by both RGB and motion C3D

networks are concatenated with the features generated by

the dense trajectories algorithm to form the feature repre-

sentations of the clips. Before fed these feature representa-

tion into the LSTM model, a fully connected layer is also

added to smooth the transition process.

In our framework, the LSTM model serves as a se-

quential information encoder. The video V is sliced with

a certain overlap into clips
〈
c1, c2, . . . , cn

〉
. These sliced

video clips are represented by the spatiotemporal features

extracted from them:
〈
c1, c2, . . . , cn

〉
7→

〈
f1, f2, . . . , fn

〉
, (7)

and then the sequence of these features, in the same order

41



Figure 6. Spatiotemporal-LSTM framework: (a) Three types of spatiotemporal features are extracted from sliced clips by spatial-C3D,

motion-C3D, and dense trajectories respectively. These three features are then ℓ2 normalized and concatenated to form the feature repre-

sentation of the video clip. (b) A fully connected layer is added to make the concatenated features more suitable for the LSTM model. (c)

The features output by the fully connected layer are fed into the LSTM network in the same sequence order as the video clips. This process

can embed the sequential information into the extracted spatiotemporal features. (d) The predictions made by the output of LSTM model.

These predictions are averaged to get the final prediction of category of the video.

Figure 7. Examples of the frames of various concepts in the HMDB51 and UCF101 datasets.

as the video clips, is fed into the sequential information en-

coder:

〈
y1, y2, . . . , yn

〉
= LSTM(

〈
f1, f2, . . . , fn

〉
), (8)

Therefore, the final feature representation,
〈
y1, y2, . . . , yn

〉
,

output by our proposed spatiotemporal-LSTM framework

includes both spatiotemporal attributes and the sequential

information of these sliced clips.

For each element in the output feature sequence,〈
y1, y2, . . . , yn

〉
, a softmax classifier is applied, and the re-
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sulting predictions are summed up to make the final predic-

tion:

Score =

n∑

i=1

ϕ(yi), (9)

where ϕ represents the softmax classifier.

The whole structure of our proposed spatiotemporal-

LSTM framework is presented in the Figure 6. As observed

from the experiments, more discriminative power is ren-

dered to the feature representations output by our frame-

work, which contributes to better performance on the action

recognition task.

5. Experiments

In this section, we first describe the action recognition

datasets utilized in our experiments. Then the implementa-

tion details are presented. A parametric study is conducted

to explore the impact of the step size and sequence length

in the LSTM model. At last, the comparison of the results

of our proposed spatiotemporal-LSTM framework with the

baseline results is demonstrated.

5.1. Datasets

Our proposed spatiotemporal-LSTM framework is eval-

uated on two datasets: HMDB51 and UCF101. Examples

of the frames of these two datasets are presented in the Fig-

ure 7. The details of the datasets are shown below:

HMDB51 dataset [14] consists of 51 action categories

and 6766 videos. For each action class, there are 70 video

samples for training and 30 video samples for testing. This

dataset provides both original and stabilized videos, our ex-

periments are conducted on the original version. There are

three train/test data splits provided for this dataset, and an

average accuracy on these three splits are reported in our

experiments.

UCF101 dataset [21] is extended from the UCF50

dataset. It contains 101 action classes that can be di-

vided into five types: human-object interaction, body-

motion, human-human interaction, playing musical instru-

ments, and sports. There are total 13320 video clips con-

tained in this dataset, with fixed frame rate of 25 FPS and

resolution of 320 × 240. Again, we report an average per-

formance of our framework on the three train/test splits pro-

vided by this dataset.

5.2. Implementation Details

Around each trajectory, a volume of pixels, N ×N ×L,

is selected to compute the corresponding descriptors. To

extract trajectories with the same fixed length as the clip

length in the C3D method, the lengths of trajectories are set

to 16. The patch size, N × N , is set to 32 × 32. This vol-

ume is then split into nσ × nσ × nτ cells, where nσ × nσ

Network fc6 fc7

spatial-C3D-LSTM 82.5% 83.0%

motion-C3D-LSTM 79.2% 80.4%
Table 2. Comparison of the recognition accuracy of the features

output by the fc6 and fc7 layers in C3D model on the UCF101

dataset.

is the spatial size and nτ is the temporal size. In our ex-

periments, nσ is set to 2 and nτ is set to 3. In each cell,

HOG, HOF, MBHx and MBHy are computed with dimen-

sions of 8, 9, 8 and 8 respectively. These histograms are

then ℓ2 normalized and concatenated. Therefore, for each

trajectory, the dimension of the corresponding descriptor is

2× 2× 3× (8 + 9 + 8 + 8) = 396.

To make the dimensions of final feature representations

to be consistent with the output of the C3D model, the stan-

dard BOV is applied in our framework. The number of vi-

sual words is set to 4096, which is the same value as the

dimension of the feature representations output by the fc7

layer in the C3D network. Descriptors of trajectories are

then assigned to their closest vocabulary word using Eu-

clidean distance. The resulting histograms of visual word

occurrences are the feature representations.

For the C3D network, the details of architecture are pre-

sented in the Table 1. The C3D network is pre-trained on

the sports1M dataset. The training parameters are the same

as in the paper [23]. Two C3D networks are trained in our

proposed framework: spatial-C3D on the RGB frames and

motion-C3D on the optical flow images. The dimensions of

the features extracted by spatial-C3D and motion-C3D are

all 4096. The final spatiotemporal features of sliced video

clips are the concatenations of the features computed from

the dense trajectories algorithm, spatial-C3D and motion-

C3D. Therefore, the final dimension of the extracted spa-

tiotemporal features is 3× 4096 = 12288.

To integrate the LSTM model with the extracted spa-

tiotemporal features, a fully connected layer is added ahead

of the LSTM network. We adopt the structure of the LSTM

network presented in the paper [5].

5.3. Parametric Study

In this section, we present an ablation study of a set of the

parameters in our proposed spatiotemporal-LSTM frame-

work on the UCF101 dataset.

First, a comparison of the performance of the features

output by the fc6 and fc7 layers in C3D network are

presented in the Table 2. The spatial-C3D-LSTM and

motion-C3D-LSTM are constructed by directly connecting

the LSTM model to the output features of spatial-C3D and

motion-C3D respectively. As observed from the table, the

features output by the fc7 layer of C3D network consistently

outperform the features output by the fc6 layer.

Since the LSTM network can take sequences of input
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with variant lengths, we evaluate the impact of the sequen-

tial length and step size of the input features on the LSTM

model. The results are shown in the Table 3.

step length accuracy

1

8 82.8%

16 83.0%

32 82.6%

64 82.4%

8

8 81.6%

16 82.3%

32 82.0%

64 81.5%

16

8 81.3%

16 81.7%

32 81.3%

64 81.1%
Table 3. Evaluations of the impact of the sequential lengths and

step sizes of the inputs on the LSTM model. All results are re-

ported by spatial-C3D-LSTM on the UCF101 dataset. The best

result is singled out with the bold font.

As shown in Table 3, the best performance is achieved

with the sequential length of 16 and the step size of 1. The

reason may be that, since the clip length is 16, by setting

the sequential length to 16 and the step size to 1, the LSTM

model can learn more compact features for the sequence of

input clips.

5.4. Results and Analysis

In this section, we present the results of our proposed

spatiotemporal framework, and compare with the perfor-

mance of the state-of-the-art algorithms. The results are

shown in the Table 4.

Compared with the C3D method, our spatial-C3D-

LSTM model has an improvement of 0.7% on the UCF101

dataset, and 1.3% on the HMDB51 dataset. By combin-

ing the spatio-C3D and motion-C3D, the (spatial+motion)-

C3D-LSTM improves 2.3% and 3.9% on the UCF101 and

HMDB51 datasets respectively, when compared with C3D

method.

By integrating the dense trajectories with LSTM net-

work, improvements of 5.9% and 2.0% can be achieved

on the UCF101 and HMDB51 datasets respectively, when

compared with DT+BOV method which only adopts the

dense trajectories algorithm.

Our spatiotemporal-LSTM framework concatenates all

the features output by spatial-C3D, motion-C3D and dense

trajectories to form the final spatiotemporal feature repre-

sentation for each video clip. And then a sequence of these

feature representations is input to the network, which is

comprised of a fully connected layer and LSTM network.

As observed from the results, our spatiotemporal-LSTM

framework can have improvements 3.1% and 4.3% on the

Methods UCF101 HMDB51

Deep networks[12] 65.4% -

LRCN [5] 82.9% -

LSTM on long clips[17] 88.6% -

Two-stream network [20] 88.0% 59.4%

TDD+FV[26] 90.3% 63.2%

STIP+BOV[1] 43.9% 23.0%

iDT+FV[25] 85.9% 57.2%

DT+BOV[24] 73.4% 46.6%

DT+FV[1] 81.4% 54.8%

C3D[23] 82.3% 49.9%

spatial-C3D-LSTM 83.0% 51.2%

motion-C3D-LSTM 80.4% 49.4%

(spatial + motion)-C3D-LSTM 84.6% 53.8%

DT-LSTM 79.2% 48.6%

spatiotemporal-LSTM 85.4% 55.2%
Table 4. Action recognition results on UCF101 and HMDB51. The

results obtained by our proposed framework and the state-of-the-

art algorithm are singled out.

UCF101 and HMDB51 datasets respectively, when com-

pared with the C3D method.

Among our listed results, TDD+FV[26] achieves the best

results. This method replaces the traditional descriptors

with the CNN learned features in the dense trajectories al-

gorithm. Because of limited time, we have not tried TDD in

our framework, which is part of the future work.

Based on the above discussion, improvements can be

achieved by embedding the sequential information into

the spatiotemporal features. Therefore, our proposed

spatiotemporal-LSTM framework can provide more dis-

criminative and robust features compared with the ones only

contain spatiotemporal or sequential information.

6. Conclusion

We have proposed a novel video feature extraction

framework, which embeds the sequential information to the

extracted spatiotemporal features. The experimental results

demonstrate that our framework can achieve more accurate

results on the UCF101 and HMDB51 datasets, when com-

pared with the baseline algorithms (C3D and dense trajec-

tories). By integrating the sequential information with the

spatiotemporal information, the resulting features are more

robust and effective to represent videos for action recogni-

tion task.
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