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Abstract

Manual annotation of facial action units (AUs) is highly

tedious and time-consuming. Various methods for automatic

coding of AUs have been proposed, however, their perfor-

mance is still far below of that attained by expert human

coders. Several attempts have been made to leverage these

methods to reduce the burden of manual coding of AU acti-

vations (presence/absence). Nevertheless, this has not been

exploited in the context of AU intensity coding, which is a

far more difficult task. To this end, we propose an expert-

driven probabilistic approach for joint modeling and esti-

mation of AU intensities. Specifically, we introduce a Con-

ditional Random Field model for joint estimation of the AU

intensity that updates its predictions in an iterative fash-

ion by relying on expert knowledge of human coders. We

show in our experiments on two publicly available datasets

of AU intensity (DISFA and FERA2015) that the AU cod-

ing process can significantly be facilitated by the proposed

approach, allowing human coders to faster make decisions

about target AU intensity.

1. Introduction

Human facial expressions are typically described in

terms of variation in configuration and intensity of facial

muscle actions defined using the Facial Action Coding Sys-

tem (FACS) [5]. Specifically, the FACS defines a unique set

of 33 atomic non-overlapping facial muscle actions named

Action Units (AUs) [17]. It also defines rules for scoring

the intensity of each AU in the range from absent to max-

imal intensity on a six-point ordinal scale. Using FACS,

nearly any anatomically possible facial expression can be

described by decomposing it into specific AUs and their in-

tensities. This is considered the most objective way of de-
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Figure 1: The guided AU intensity annotation. First, the

AUs intensities are jointly modeled using a CRF-based clas-

sifier. Secondly, the model predictions are used to assist a

human coder in an iterative fashion: the coder scores the in-

tensity of an AU (depicted in red) that is the easiest. Then,

this labelling is used to obtain more accurate predictions for

the remaining AUs (depicted in blue), thus, providing the

human coder with more confident suggestions for the inten-

sity of the remaining AUs. This is repeated until all AUs are

scored.

scribing human facial behaviour, and it has found a vari-

ety of applications in behavioural sciences and psychology

(e.g., studies on emotion expression), and computer analysis

of facial expressions (e.g., pain monitoring [12]).

The coding of AU intensity can be done manually or au-

tomatically, or by combining these two approaches. Man-

ual coding of AUs is typically performed by FACS certified

human coders. Apart from the fact that there are no many

experienced FACS coders, manual coding of AUs is highly

expensive and time-consuming. To illustrate the coding pro-

cess, a human coder goes through each image frame of a

face video, and identifies the intensity level of each AU. To

this end, the coder applies the intensity coding rules defined

by FACS. In addition to the facial appearance changes being

very subtle from one intensity level to another, a different

criteria for scoring AU intensity may apply when AUs occur
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in combination than when they occur alone. For instance,

the criteria for intensity scoring of AU7 (lid tightener) are

changed significantly if AU7 appears with a maximal inten-

sity of AU43 (eye closure), since this combination changes

the appearance as well as timing of these AUs [5]. Further-

more, co-occurring AUs can be non-additive, in the case of

which one AU masks another, or a new and distinct set of

appearances is created [5]. Also, some AUs are often ac-

tivated together, e.g. AU12 and AU6 in the case of smiles,

but with different intensities depending on the type of smile

(e.g., genuine vs. posed). To reduce the efforts, typically,

a subset of the most occurring AUs is selected for coding

(e.g., 12 AUs in DISFA database [20]). Yet, this process is

still tedious and error-prone due to the difficulty of discern-

ing intensities of multiple AUs [18]. Moreover, since a face

video is recorded at 25fps at least, manual coding of inten-

sity of AUs can become prohibitively expensive. Finally,

to validate the annotations, usually two independent anno-

tators are asked to do the coding, until an acceptable inter-

observer reliability is achieved [8]. This makes the whole

process even more labour intensive.

To reduce the burden of manual coding of AUs and, in

particular, their intensity, various methods have been pro-

posed to automate this process. This has become possible

mainly due to the recent advances in computer vision and

machine learning, and in particular, the affective comput-

ing field. For detailed description of the steps in automated

estimation of AUs, the reader is referred to [3]. The exist-

ing methods for automated coding of AUs can be divided

into those that output either binary (presence vs. absence)

[16, 2, 18, 29, 6] or ordinal (intensity) [17, 20, 23, 12, 11]

labels. In this work, we focus on the latter as it poses a more

challenging problem. The methods for automated estima-

tion of AU intensity can be divided into those that perform

static [17, 20, 12, 11] vs. dynamic [23] estimation. While

the former focus mainly on engineering of efficient image

features for the target task, the latter exploit the temporal

unfolding of the AU intensity. Note, however, that most

of the existing methods perform the intensity estimation in-

dependently for each AU. Only recently, several methods

for joint estimation of the AU intensity have been proposed

[24, 15, 13]. The main motivation for this approach is that

by joint modeling of AUs, the resulting AU intensity clas-

sifiers are more robust to the (highly) imbalanced intensity

levels (within and between AUs), and non-additive AU com-

binations. Also, depending on the target context (e.g., emo-

tion expression), different AUs and their intensity levels are

more likely to occur together (e.g., AU6&12 in the case of

genuine smiles). Joint modeling of AUs is also an attempt to

simulate the human (underlying) reasoning during the cod-

ing process: even though the humans code each AU sepa-

rately, they use the contextual information (the whole face)

to narrow down the possible AU combinations and their in-

tensity levels that can occur simultaneously in a face image.

Thus, knowing the context can reduce the coding time by

humans, and also reduce uncertainty in automated coding of

AU intensity.

The automatic methods in [24, 15] perform a two stage

joint modeling of AU intensity. In [24], the scores of the

pre-learned regressors based on Support Vector Regression

[1] are fed into Markov Random Field trees [1], used to

model dependencies of AU subsets. Similarly, [15] mod-

els AU dependencies using a Dynamic Bayesian Network

(DBN), applied to the intensity scores of the AU-specific

spectral regressors. A more recent approach for joint model-

ing of the AU intensity formulates a generative MRF model,

called Latent Trees (LT) [13]. In contrast to [24, 15], this

method can deal with highly noisy and missing input fea-

tures due to its generative component. While these methods

are promising attempts toward automating the joint AU in-

tensity estimation, their current performance is still far be-

low acceptable to replace human coders. For instance, [24]

achieves average correlation rate (CORR) of 34.2% between

the model prediction and human coders, on a subset of 5

AUs (1,2,3,4,6,9) from the DISFA dataset [20]. Further-

more, the highest CORR is achieved for AU1 (56.3%) and

lowest for AU6 (11.9%). Likewise, [13] achieves average

CORR of 43% on 12 AUs from DISFA dataset, with the best

performance on AU25 (82%) and lowest on AU15 (11%).

[15] achieves an intra-class correlation (ICC) score (a mea-

sure of raters agreement) of 77% on DISFA [20]. Yet, these

experiments are performed in a subject-dependent manner,

thus, are not representative for the target task. Nevertheless,

note that for methods that perform subject-independent esti-

mation of AU intensity, the CORR/ICC scores are far below

what is acceptable for human coders. This is further affected

by large variation in intensity estimation performance on in-

dividual AUs (being as low as 1% [13]).

While the methods mentioned above are still not accu-

rate and reliable enough to replace the human coders, they

can be exploited in order to reduce the burden of AU man-

ual coding. This, in turn, would provide a better access to

the labelled data that then can be used to improve models

for AU intensity estimation. Several works have explored

such approach. In Fast-FACS [4], FACS coders first detect

AU peaks manually, and then an algorithm automatically

detects their onset and offset phase. This led to more than

50% reduction in the time required for manual FACS cod-

ing. [27] developed an alternative approach that uses active

learning. The system first performs initial labeling automat-

ically. Then, a FACS coder manually makes any corrections

if needed. The corrected labelling is then fed back to the sys-

tem to re-train the model. In this way, system performance

is iteratively improved. Likewise, [9] proposed an automatic

method for successive detection of onsets, apexes, and off-

sets of consecutive facial expressions. All of these efforts
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combine manual and automated methods with the aim of

achieving synergistic increases in efficiency [3].

In this work, we propose a novel approach to guided

coding of the AU intensity. This is in contrast to the

works mentioned above that perform coding of the AU pres-

ence/absence, and do so independently for each AU. Specif-

ically, we propose a coding framework that can reduce the

burden of the manual coding by exploiting the newly in-

troduced probabilistic model for joint estimation of the AU

intensity, and the expert knowledge. This is attained effi-

ciently in the following steps: the learned model for joint

estimation of AU intensity ’assists’ the FACS coders by pro-

viding estimates of the AU intensity level in the target face

image. The model also provides uncertainty in these esti-

mates, due to its probabilistic nature. This allows the FACS

coders to reduce the range of possible choices for the target

AU intensity by focusing on the most confident predictions

by the model. The FACS coder then selects the correct in-

tensity label for the target AU. This, in turn, is then used by

the model to refine the intensity estimates for the remain-

ing AUs, resulting in even more confident predictions by

the model. This process is repeated until the intensities of

all target AUs are scored. To this end, we introduce a novel

Conditional Random Field (CRF) model for joint estima-

tion of the AU intensity levels. This CRF model considers

sparse, graph-induced, relationships between the intensity

levels of multiple AUs simultaneously. We demonstrate the

utility of the proposed approach on two benchmark datasets

of spontaneous AUs, DISFA [20] and FERA2015 [26], in

both model-driven and expert-driven settings (i.e., when the

model predictions are refined using the coders’ scoring, as

depicted in Fig. 1). The contributions of this work can be

summarized as follows:

1. We propose a novel framework for guided annotation

of the AU intensity levels from face images. To the

best of our knowledge, this is the first approach that

allows so by combining the expert knowledge and the

probabilistic modeling framework for automated joint

estimation of the AU intensity.

2. We propose a novel CRF-like model for joint estima-

tion of the AU intensity levels in real-time, making it

suitable as an assistive tool for manual coding of AUs.

Furthermore, this approach performs similarly or bet-

ter than the state-of-the-art related approach for joint

inference of AU intensity [24], while being computa-

tionally more efficient.

3. We show on two public datasets of face images, coded

in terms of the AU intensity levels, that the proposed

approach achieves significantly better estimation of

the AU intensity levels (due to the joint AU model-

ing) when more AU labels are provided by the expert.

(a) DISFA (b) FERA2015

Figure 2: The glasso removes the majority of AU pairs from

the precision matrix, preserving only the strongest partial

correlations. These are later modeled in the proposed CRF.

This can be exploited to largely speed-up the manual

FACS’s coding efforts by providing the label sugges-

tions to the coders, along with their uncertainty.

4. We also show that comparable gains in the estimation

performance can be obtained by the proposed approach

regardless of the labelling order (from the most to the

least uncertain AUs by the model, and vice verse).

This, in turn, allows the FACS coder to start annotat-

ing the ’easiest’ AUs first, resulting in more confident

predictions for more difficult AUs, thus, reducing the

labelling effort.

In the rest of the paper, we introduce the proposed model

for joint modeling of AU intensity levels, and describe

our approach for combining the model learning and expert

knowledge in order to perform guided coding of the AU in-

tensity. We then perform experimental evaluation of the pro-

posed approach, and conclude the paper.

2. Methodology

2.1. CRF for Joint AU Intensity Estimation

Let us denote the training set as D = {Y,X}. Y =
[y1, . . . ,yi, . . . ,yN ]T is comprised of N instances of mul-

tivariate outputs stored in yi = {y
1
i , . . .y

q
i , . . .y

Q
i }, where

Q is the number of AUs, and y
q
i takes one of {1, ..., Lq}

discrete intensity levels of the q-th AU. Furthermore, X =
[x1, . . . ,xi, . . . ,xN ]T are input features (e.g., facial points)

that correspond to the combinations of labels in Y. Thus,

our goal is to simultaneously estimate the combination of

the intensity levels yq of Q AUs, given the facial features

x. To this end, we propose a CRF structure-based approach.

First, we build a dependency graph which takes the form

T = (V,E), where the vertices V = v1, ..., vQ are used to

model each AU, and edges (ers 2 E) account for dependen-

cies between AU intensities.
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2.2. The Graph Structure

Modeling the fully connected graph (i.e., Q⇥ (Q− 1)/2
edges) is impractical as not all AU exhibit a dependence

pattern (e.g., AU16 (lower lip depressor) and AU17 (chin

raiser) rarely co-occur). We learn the cliques (i.e., the edges)

in our CRF model from the precision matrix derived from

the correlation matrix S of the intensity labels of AUs. This

is because the precision matrix unravels partial correlations

among the AUs, while the correlation matrix focuses on

marginal correlations [10]. Important advantage of this is

that AUs correlated through another AU are ignored, there-

fore, avoiding a redundant modeling. To this end, we exploit

partial correlations using a sparse estimate of the precision

matrix Υ computed from S. The aim is to reduce the num-

ber of the model parameters by not accounting for ‘weak’

dependencies among the AUs. We first empirically estimate

S from training data, and then obtain sparse S̃ by means of

the graphical lasso estimation [7], used to solve the follow-

ing convex optimization:

(Υ, S̃) = min
Υ!0
− ln det(Υ) + tr(SΥ) + kΥk1, (1)

where  is the regularization parameter.1 Finally, the edge

set E is defined by keeping the edges that satisfy: E =
{(r, s) : |Υr,s| > δ}. δ = 0.05 is chosen so that only the

pairs of AUs with strong partial correlations are kept, re-

sulting in a model with fewer parameters [21]. The learned

graphs for the used datasets are depicted in Fig. 2.

2.3. Structured Learning

Using CRFs [14], the joint pdf of Q random variables

(AU intensity) is defined as:

P (~y|~x,Ω) =
1

Z

Y

c

Ψ(yc|x) (2)

where Z is the partition function, yc is the subset of random

variables in clique c, Ψ(·) is the edge potential defined on

the labels in this clique, as explained below, and Ω = {#, ✓}
are the model parameters.2 In our setting, we only consider

unary and binary cliques, modeling individual independent

AUs and pairs of AUs. In other words, C = V [ E, where

E is the set of edges in G. Hence,

Ψ(yc|x) =

8

>

>

<

>

>

:

exp(fn(yr, ~x)),
c = r 2 V

unary clique

exp(frs(yr, ys, ~x)),
c = (r, s) 2 E
pairwise clique

(3)

fr(yr) stands for the node features that correspond to AUr

with intensity level yr. Similarly, frs(yr, ys) describes the

1We used the glasso Matlab code from [7].
2For simplicity, we often drop the dependency on Ω in notations.

edge features which correspond to the compatibility of AUr

and AUs with the intensities yr and ys. The choice of the

node fr(yr) and edge fr,s(yr, ys) features depends on the

target task, and plays a crucial role in the definition of CRFs.

Furthermore, we assign linear weights to the node features

as:

fr(yr, ~x) =

L
X

k

I(yr = k) · ~wT
rk · ~x+ brk (4)

where L is the number of intensity levels and I(⇤) is the

indicator function that returns 1 (0) if the argument is true

(false). The projection vector ~wT
rk performs feature selec-

tion for the AU scores as yr, and brk is a bias for that AU.

The edge features model the dependence between two AUs

as:

frs(yr, ys, ~x) =

L
X

m,k

I(yr = m, ys = k) · urs[m,k] (5)

where m, k = 1, ..., L are combinations of intensity levels

and urs measures the dependence between each AU inten-

sity combination.

2.4. Optimization

By using the notion of the negative log-likelihood, our

learning objective can be written as:

NCL = −

N
X

i=1

{log(Ψ(yi|x))− log(Z)}, (6)

where N is the number of training instances. The most crit-

ical aspect in evaluation of the joint distribution in Eq. 2

is computation of the partition function Z. This is an np-

complete problem, and thus, exact inference is intractable in

general. However, approximate methods based on Markov

chain Monte Carlo (MCMC) and Loopy Belief Propaga-

tion (LBP) have been proposed to this aim [28]. To this

end, we resort to the message-passing LBP, which is a dy-

namic programming approach to approximating conditional

probability queries in a graphical model. For completeness,

we briefly summarize the LBP algorithm: each node y rep-

resents one AU and computes a belief BEL(yq = i) =
P (yq = i|ev), where ev is the observed evidence to inten-

sity level i. This is attained by combining messages from

its adjacent nodes. This procedure is repeated for each node

until convergence. The running time for the LBP algorithm

on our graph is O(Q ⇤LC), where Q is the number of AUs,

L is the number of intensity levels, and C is the maximum

clique size [1]. The convergence was reached in less than 30

iteration and the total processing is done in real time (e.g.,

12K frames on an 2.4 GHz Intel Xeon CPU processed in

less than 25 sec). Lastly, the parameter optimization is per-

formed by approximating the partition function and mini-

mizing the NCL (Eq.6) w.r.t. Ω. For this, we employ LBP

and the Conjugate gradient method with line search [22].
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Algorithm 1 Inference: CRF+
exp

Input: Test data: D = {~xi}
N
i=1

Model parameters: Ω = {w, u}
Graph Structure: T = {V,E}
Output: Annotations: Y

Initialize output and potentials

Y={}
8r 2 V ! nr = fr(~x) (Eq. 4)

8rs 2 E ! ers = frs(~x) (Eq. 5)

repeat

Step-1: compute marginals for all AUs (Eq. 8)

8r 2 V ! pr = P (r|Y )
Step-2: select AU for annotation (Eq. 11)

i argmin
r

H(p[r])

Step-3: add labels to observed set

Y  Y ^ yi
until all AUs are labelled

Regularization: During training, we seek to find parame-

ters Ω⇤ by solving the regularized optimization problem:

Ω⇤ = argmin
Ω∗

NCL(', ✓) +Rn +Re,

where NCL is defined by Eq.6, Rn and Re stand for the

standard L2 regularization of the model parameters ~wr and

urs, respectively.

2.5. Inference

In this section, we briefly describe the proposed approx-

imate inference method based on an iterative maximum a-

posterior (MAP) algorithm. First, we perform MAP infer-

ence using the LBP for the CRFs to obtain the initial esti-

mates of the AU intensity. In the following iterations, we

compute the marginal node probability, conditioned on a set

of observed AUs as provided by FACS coders. This results

in two sets of nodes, the set of observed (Y ) and predicted

(B) nodes. The conditional probability of B given Y is then

defined by:

P (B|Y ) = P (Y,B)/P (Y ) (7)

The marginal probability for the i-th AU having intensity k,

given the labels Y can then be computed by marginalizing

out the predictions of all remaining AUs from B.

P (Bi = k|Y ) =
X

B 6=Bi

P (B|Y ) (8)

For clarity, we use an example with 3 AUs. Assuming we

have a trained model that returns the joint predictions for all

three AUs. We also have a dataset in which the labels of the

third AU are given Y = {y3}. Using Eq. 7, the conditional

probability of B = {y1, y2} can be directly computed by:

P (y1, y2|y3) =
P (y1, y2, y3)

P

y1,y2
P (y1, y2, y3)

(9)

Where P (y1, y2, y3) is defined in Eq. 2. The marginal prob-

ability of node y1 having intensity level k can be directly

computed by:

P (y1 = k|y3) =
X

y2

P (y1 = k, y2|y3) (10)

The MAP solution and the marginals can be computed by

iteration over all possible combinations of intensity levels

for y2. For larger problems however, this is again intractable

and we estimate the values using LBP (see above).

2.6. Expert Driven Entropy Reduction

The more outputs to estimate, the more uncertainty in

the estimation process. We propose an estimation approach

applicable to any probabilistic multi-output classifier, aim-

ing at obtaining more accurate predictions by providing ad-

ditional partially labeled data. This is done by iteratively

adding evidence to the predicted outputs in order to mini-

mize the uncertainty for the remaining ones. In our CRF

model, this is equivalent to minimizing the entropy of the

predicted probability distribution. Entropy is a measure of

the expected information content or uncertainty of a proba-

bility distributions and is defined as:

Hr = −
X

k

Prk · log(Prk), (11)

where Prk is the probability of AUr having the intensity

level k. This reflects the notion that the lower the proba-

bility of an intensity level to occur, the higher amount of

information in the message stating that the level occurred.

In this work, we aim to increase the classification perfor-

mance for joint AU intensity estimation by providing labels

of certain AUs in an iterative manner. This can be done in

two different settings either by manually annotating AUs,

that are difficult to predict (high entropy) or by annotating

AUs that are easy to predict (low entropy). For example, a

joint model could be trained for predicting AU-intensities.

A FACS coder could then simply annotate the easy targets

(e.g., intensity of AU12) and some of the remaining AU in-

tensity predictions should benefit from this additional infor-

mation. In what follows, we apply iterative labeling, start-

ing from the AU with the lowest entropy and recompute the

performance on the remaining AUs. A trained model for

joint prediction, a graph that defines the dependency struc-

ture and a set of input vectors is used as input. Moreover, we

initialize the output Y with an empty list and compute the

node and edge potentials. In the first iteration, we compute
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(a) DISFA (b) FERA2015

Figure 3: Distribution of the AU intensity levels.

the marginals (Step-1) and the entropy (Step-2) for all AUs.

The expert annotator assigns a score to the AU with the low-

est entropy (Step-3). Finally, we include the label of that AU

to the output set Y and recompute the predictions (Step-1)

with a lower entropy (i.e., higher certainty and, thus, ex-

pected higher classification performance). These 3 steps are

repeated until all AUs are annotated, as described in Alg. 1.

3. Experiments

3.1. Datasets

We evaluate the proposed approach on two benchmark

datasets - Denver Intensity of Spontaneous Facial Actions

(DISFA) [20], and on a subset of the BinghamtonPittsburgh

4D Spontaneous Expression (BP4D) [26] database that is a

part of the FERA2015 challenge for the AU-intensity es-

timation. This databases include acted and spontaneous

expressions and vary in image quality, video length, an-

notation, number of subjects, and context. Specifically,

the DISFA dataset contains videos of 27 subjects watch-

ing YouTube videos. For the experiments presented here,

we used a subset of 5 AUs - two pairs of of highly corre-

lated AUs (1,2 and 6,12) and the most frequently occurring

AU (25). Only the image frames with at least two active

AUs (intensity levels > 1) were used to balance the data.

To this end, we further merged levels 5 and 6 as only few

examples of the highest intensity levels were present. The

FERA2015 database includes video of 41 subjects: 21 in

the training, and 20 in the development (in our case, test)

set. The dataset contains intensity annotations for AUs 6,

10, 12, 14, and 17. The resulting intensity distribution is

depicted in Fig. 3.

3.2. Features

We used the geometric facial features in our experiments,

as in [13]. Namely, we used the locations of 49 out of 66

fiducial facial points (provided by the database creators) ex-

tracted from facial images in each dataset, using the 2D Ac-

tive Appearance Model (2D-AAM) [19]. We removed the

points from the chin line, as these do not affect the estima-

Active Expression
Initial posteriors

Step 1 Step 2

Step 3 Step 4

Figure 4: The guided coding of AU intensities in an example

facial expression. The posteriors provide the probability of

each AU intensity by the model. The yellow squares depict

the correct labels. In each step, the FACS coder labels the

AU with the least average entropy (bar on the left), and then

the model predictions are updated. This is repeated until

all AU are coded. Observe the decrease in the average en-

tropy of each AU, and the model automatically ’correcting’

its predictions after each step.

tion of target AUs. We then registered the 49 facial points

to a reference face (average points in each dataset) using an

affine transformation. To reduce the dimensionality of the

features, we applied PCA, retaining 97% of the energy. This

resulted in approximately 20 dimensional feature vectors.

3.3. Evaluation metrics

Intra-class Correlation (ICC). We report the Intra-class

Correlation (ICC(3,1)) [25], which is commonly used in be-

havioral sciences to measure agreement between annotators

(in our case, the AU intensity labels and model predictions).
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Database DISFA FERA2015

AU AU1 AU2 AU6 AU12 AU25 avg. AU6 AU10 AU12 AU14 AU17 avg.

IC
C

MLR .23 .39 .67 .35 .60 .45 .35 .48 .81 .22 .27 .43

CRF .40 .52 .73 .52 .63 .56 .49 .48 .71 .23 .23 .43

MRF[24] .42 .55 .69 .54 .54 .55 .53 .44 .83 .23 .24 .45

CRFauto .41 .56 .73 .51 .61 .56 .49 .46 .73 .21 .23 .42

MRFauto .38 .44 .69 .58 .51 .52 .53 .42 .79 .25 .21 .44

CRF−
exp .83(3) .52(1) .76(5) .53(4) .63(2) .65 .55(4) .48(1) .82(5) .24(2) .28(3) .47

MRF−
exp .73(5) .76(4) .64(2) .76(3) .54(1) .69 .56(4) .46(2) .87(5) .23(1) .30(3) .48

CRF+
exp .46(4) .84(5) .73(1) .71(2) .69(3) .69 .49(1) .63(4) .83(2) .33(5) .31(3) .52

MRF+
exp .42(1) .74(2) .66(3) .76(4) .60(5) .64 .53(1) .62(4) .87(2) .36(3) .28(4) .53

F
1

MLR .33 .22 .48 .19 .21 .29 .23 .23 .40 .18 .18 .24

CRF .36 .29 .50 .22 .29 .33 .29 .33 .35 .25 .20 .28

MRF[24] .32 .31 .43 .24 .32 .32 .32 .32 .43 .25 .21 .31

CRFauto .36 .28 .49 .21 .30 .33 .29 .31 .35 .22 .21 .28

MRFauto .32 .24 .41 .21 .27 .29 .32 .29 .41 .24 .23 .30

CRF−
exp .39(3) .29(1) .37(5) .29(4) .50(2) .37 .30(4) .33(1) .44(5) .25(2) .22(3) .31

MRF−
exp .41(5) .32(4) .45(2) .39(3) .32(1) .38 .34(4) .31(2) .51(5) .25(1) .24(3) .33

CRF+
exp .36(4) .39(5) .50(1) .23(2) .49(3) .39 .29(1) .44(4) .42(2) .31(5) .25(3) .34

MRF+
exp .32(1) .51(2) .32(3) .40(4) .45(5) .40 .32(1) .42(4) .47(2) .34(3) .24(4) .36

Table 1: Performance on the DISFA and FERA2015 datasets. The iterative methods with expert labeling perform significantly

better than classical models (MLR,CRF,MRF). The iteration order is shown in brackets. The best results are depicted in bold.

F1 Score. We also report the F1 score which is widely

used for facial expression recognition tasks because of its

robustness to the imbalanced labels (see Fig. 3). For each

AU intensity, F1 is computed based on a frame-based inten-

sity scores and by averaging the scores for all levels.

3.4. Models

We evaluate the performance of the proposed annota-

tion framework in different settings using the proposed CRF.

We also provide comparisons with the related state-of-the-

art MRF model [24] for joint modeling of AUs. For the

MRF, we compute the map solution of each minimum span-

ning tree of the target AU separately, as done in [24]. As a

baseline, we include multivariate logistic regression MLR,

derived by removing the edge potentials from our CRF.

CRFauto and MRFauto represent the fully automatic setting

in which labels are provided using solely the model predic-

tions. The predictions for each AU are obtained by com-

puting the MAP solution conditioned on the labels that have

already been obtained in the previous steps by the model.

This is applied iteratively, starting with the AU with the low-

est entropy. Similarly, CRF+
exp and MRF+

exp, also apply it-

erative computation of the MAP solution for each AU and

select the one with the lowest entropy for annotation. The

difference to the automatic setting is that here, in each iter-

ation3, we assign the ground truth label to the target AU,

as provided by the FACS coder. The same is performed

in reverse order (decreasing order starting with the highest

entropy) in CRF−
exp and MRF−

exp (see Alg.1). For DISFA,

3In each iteration, one AU is coded by an expert. Thus, the number of

iterations is the number of AUs - 1.

we performed a 3 fold subject-independent cross-validation,

while for FERA2015 development set is used for testing.

3.5. Evaluation

The results on the DISFA and FERA2015 databases are

shown in Table 1. Note that to report the average results for

the expert-driven models (CRF−
exp and MRF−

exp), the order

of the AUs (given in the brackets) is determined correspond-

ingly based on the average entropy for each AU, deduced

from the training set. The expert-driven models outperform

the fully automatic models on both databases and in both

measures, F1 and ICC, as expected. In particular, we make

two observations: first, this improvement is most significant

in the increasing entropy expert annotated models. In this

configuration, the last AU is the most difficult to predict and

it benefits most from the expert scoring. Secondly, the clas-

sifiers are much more certain about the decision of one AU

if it is highly correlated to an already annotated AU, as is the

case for AU6 and AU12 in FERA2015, and AU1 and AU2 in

DISFA. In this case, the ICC increased 10% for AU12 when

the labels of AU6 are given, and 32% for AU2 if the la-

bels of AU1 were given, respectively. This is also expected,

since these AU pairs are highly correlated. Furthermore,

CRF+
expoutperforms MRF+

expon the DISFA database because

its dependency structure is obtained from the graphical lasso

and can contain loops that allow it to model more complex

relationships among groups of AUs. However, this is less

pronounced in FERA2015, where both models achieve sim-

ilar results. A reason for this is that in FERA2015 some

frames are not fully annotated (at least one AU label is miss-

ing in about 40% of the frames), which may result in false
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(a) DISFA: CRF (b) DISFA: CRF+
exp (c) FERA2015: CRF (d) FERA2015: CRF+

exp

Figure 5: Performance and entropy for different subsets of the DISFA and FERA2015 database. The average ICC and entropy

is computed on that portion of frames with the highest entropy.

correlations learned by our model.

Fig. 4 shows the predictions for each AU intensity level

in an expressive face from the FERA2015 database. This

sample sample shows a facial expression in which the in-

tensity levels are not obvious to identify. Note that in the

initial step, the CRF model would return a faulty intensity

prediction for AU14. However, if the expert coder assigns

the labels for AU12 (step 1) and AU17 (step 2), the result-

ing marginals of AU14, conditioned on the given intensity

levels, are changing and predicting the right value. This can

be seen in step 3, where the probability mass is distributed

around the correct score for AU14.

Fig. 5 shows the average performance and entropy on a

subset of the 10%, 30%, . . . , 100% frames with the high-

est entropy from the test set. As expected, the ICC has the

lowest value on both databases if using only 10% of frames

with the highest entropy (highest uncertainty) and the ICC

is increasing when adding frames with the lower entropy.

With the CRF+
expmodel, the increase in performance is more

pronounced on DISFA, also observed from Table 1. Note

that the CRF model reaches the highest performance with

70% of samples on the DISFA, and 50% of samples on the

FERA2015 database. The performance drops if adding ad-

ditional samples with a lower entropy. This shows that there

is a portion of the frames for which the CRF model is falsely

overconfident. However, that effect is not observed in the

CRF+
expmodels, boosted by the expert knowledge.

Finally, Fig. 6 shows the average entropy decrease and

performance increase with each iteration if the FACS coder

does guided coding (Alg.1). The performance improves sig-

nificantly within the first 3 iterations (i.e., annotation of 3

AUs). The performance on the remaining AUs clearly in-

creases and the predictions can be used as a hint for scoring

remaining AUs by looking into their average entropy and

the probability estimates for each level.

4. Conclusions

We proposed an expert-driven probabilistic approach for

joint modeling and estimation of AU intensities. We showed

(a) DISFA (b) FERA2015

Figure 6: Entropy and performance per iteration. The plots

show the entropy decrease per iteration of the CRF+
expmodel.

As expected, ICC increases with each step.

that the classification performance can significantly be in-

creased when partial label information is provided by the

FACS coder. Specifically, we showed that the AU coding

burden can be reduced by means of automated estimation of

the AU intensity, which becomes significantly more accu-

rate by providing the AU scores to the model in the iterative

fashion. This, in turn, allows the FACS coder to faster make

decision about the target AU intensity by observing the es-

timated entropy of each AU. In our future work, we plan

to extend this approach by also updating the classifier after

each label is provided. Hopefully, this will lead to an even

more accurate model predictions, and, consequently, a more

efficient AU coding process.
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