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Abstract

Multiple object tracking in Wide Area Motion Imagery

(WAMI) data is usually based on initial detections coming

from background subtraction or frame differencing. How-

ever, these methods are prone to produce split and merged

detections. Appearance based vehicle detection can be an

alternative but is not well-suited for WAMI data since clas-

sifier models are of weak discriminative power for vehicles

in top view at low resolution. We introduce a moving vehi-

cle detection algorithm that combines 2-frame differencing

with a vehicle appearance model to improve object detec-

tion. Our main contributions are (1) integration of robust

vehicle detection with split/merge handling and (2) estima-

tion of assignment likelihoods between object hypotheses in

consecutive frames using an appearance based similarity

measure. Without using any prior knowledge, we achieve

state-of-the-art detection rates and produce tracklets that

considerably simplify the data association problem for mul-

tiple object tracking.

1. Introduction

The term Wide Area Motion Imagery (WAMI) denotes

video data that is acquired by moving airborne cameras at

a low frame-rate of about 1 Hz and a high ground coverage

of several square kilometers per image. Such kind of data

can be used to solve wide area surveillance tasks such as

traffic monitoring, detection of abnormal behavior, or bor-

der security. However, automatically analyzing WAMI data

is ambitious for numerous reasons such as camera motion,

nonexistent color channels, or the large amount of data with

up to hundreds of megapixels per image.

The mentioned surveillance tasks share the need for ac-

curate tracking of moving objects in the scene. This is chal-

lenging due to the large displacement of objects between

two consecutive images as a result of the low frame rate
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Figure 1. Motivation: (a) image region of 100 × 100 pixels

with four vehicles, (b) object detection using background subtrac-

tion [28], and (c) the proposed object detection approach.

and due to large number of objects with several hundreds

of vehicles per image in urban traffic scenarios. Existing

tracking algorithms are based on detections coming from

background subtraction or frame differencing [38, 28, 29].

As illustrated in Fig. 1, these detection methods are prone to

produce both false positive (FP) detections caused by image

misalignment, parallax effects, or split detections and false

negative (FN) detections that occur due to weak contrast,

occlusions, or merged detections. In current literature, these

shortcomings of the detection methods are directly trans-

ferred to the tracking module and handled there implicitly,

e.g., by introducing traffic models [29].

In this paper, we introduce a robust vehicle detection ap-

proach for WAMI data. Robustness is difficult to achieve

as each vehicle covers only about 10 × 20 pixels in the

image and thus appearance based classifier models are ex-

pected to be of weak discriminative power. In order to

still apply this weak vehicle model, we avoid using con-

text knowledge as proposed in [31, 20] but instead build

up on a 2-frame differencing approach. We only assume

that each moving vehicle gives us at least two blobs in the

difference image. The displacement and the size of these

blobs is used to reduce the search space for sliding win-

dow based vehicle detection. Our contributions are (1) in-

tegration of robust vehicle detection using sliding windows,

(2) explicit handling of merged detections using k-means,

(3) implicit avoidance of split and ghost detections that are

typical for 2-frame differencing, and (4) estimation of as-

signment likelihoods between object hypotheses in consec-

utive frames using an appearance based similarity measure.
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These assignment likelihoods provide association proposals

that can significantly simplify the data association problem

for multiple object tracking. For our evaluations, we use

the WPAFB 2009 dataset provided by the U.S. Air Force

Research Lab (AFRL) [1] that comes with around 18,000

fully ground-truthed vehicle tracks.

Several authors already proposed to improve multiple

object tracking in WAMI data by integration of appearance

information [3, 24, 5, 27, 23]. However, appearance is used

to support tracks of slow, stopping or, occluded vehicles

and thus the tracks are assumed to exist already. In this pa-

per, we use appearance based vehicle detection to initialize

tracks and to simplify the data association problem.

The remainder of this paper is organized as follows: lit-

erature is reviewed in Section 2. The proposed object de-

tection approach is presented in Section 3. Experimental

results are given in Section 4. We conclude in Section 5.

2. Related Work

In the last few years, several authors proposed process-

ing chains that are able to cope with the challenges of

WAMI data and some methods became common. Compen-

sation for camera motion is achieved by assuming that the

scene can be approximated by a ground plane and estimat-

ing the parameters of a global camera motion model (ho-

mography) [17]. Therefore, sparsely distributed local im-

age features such as Harris corners [16] are detected in two

consecutive images and descriptors are used to find match-

ing pairs of features to calculate frame-to-frame homogra-

phies [25, 38, 28, 29]. These global motion models are then

used to align consecutive images.

2.1. Moving Object Detection by Segmentation

Background subtraction [25, 28, 26, 27] and frame dif-

ferencing [38, 18, 29, 5] are the most popular approaches

for detecting moving objects in WAMI data. Actually, both

methods rather are segmentation approaches: either two or

three aligned images are used to calculate a difference im-

age in which bright pixels represent changes between the

images. These changes are assumed to come from the dis-

placement of moving vehicles. Bright pixels are thresh-

olded and clustered generating blobs. Morphological oper-

ations are applied to refine these blobs and small blobs are

removed as they are assumed to be the result of noise in the

difference image. Each detected object is then represented

by the centroid of its related blob.

In general, noise in the difference image is a big prob-

lem. It can occur due to image misalignment, unhandled

parallax effects, sudden changes in camera gain, and mov-

ing mosaic seams. This can result in a large number of

FP detections. Several methods were proposed for reduc-

ing the noise: only 10 images are used to learn short-term

median background models [28] instead of standard Gaus-

sian Mixture Models (GMM) [25]. In order to suppress

noise coming from parallax effects, pixel neighborhoods

can be considered for difference image calculation [26] or

the background gradients can be subtracted from the dif-

ference image [28]. However, misalignment is still a prob-

lem when using background models. So, the influence of

misalignment is minimized by frame differencing: Saleemi

and Shah [29] propose to directly subtract two consecutive

images without any background model but as already men-

tioned the explicit handling of ghosting is difficult. Xiao et

al. [38] introduce the subtraction of three consecutive im-

ages to avoid ghosting. This method recently became popu-

lar [18, 5]. Artifacts originating from moving mosaic seams

and changes in camera gain can be reduced by applying a

box filter to the difference image before objects are seg-

mented [18]. However, frame differencing is prone to pro-

duce split detections especially for slowly moving objects.

2.2. Vehicle Detection

In this subsection, we focus on object detection methods

based on sliding windows. Their applicability was already

demonstrated for several tasks such as face detection [37],

human detection [10], and on-road vehicle detection [33].

Although the application of sliding windows is an exhaus-

tive search, several optimization methods were proposed in

order to achieve real-time capabilities [6].

Some authors already proposed sliding window based

vehicle detection in aerial videos [8, 36, 34] and even in

wide area aerial videos [21, 31, 20]. All methods, however,

have in common that learning a classifier model for vehi-

cle appearance at low resolution in top view images leads

to a model of weak discriminative power. Even for pop-

ular descriptor/classifier combinations such as Histograms

of Oriented Gradients (HOG) + Support Vector Machines

(SVM) [8, 36] and Haar features + AdaBoost [13, 34], the

classifier only learns a rectangular shape. Considering color

information can be very helpful [3, 19] but is not possible as

the WPAFB dataset only provides monochromatic images.

Furthermore, not only the scale but also the orientation of

vehicles can vary in top view videos. This is different com-

pared to human detection where usually at least head and

torso are assumed to be in upright position.

In order to avoid a large number of FP detections, the

search space of the sliding window has to be reduced. The

spatial search area can be limited to areas of independent

motion which has been proposed only for videos with high

frame rate so far [8, 34]. Furthermore, context knowledge

about the road network can be involved either by using a

Geographic Information System (GIS) [38] or automatic

road detection using vehicle tracks [31]. One limitation of

road context is that vehicles might be missed, if they do not

use the main roads. The orientation search space can be
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reduced using the motion direction of individual objects in

case of high frame rate videos [35] or by deriving dominant

motion directions from detection locations over a certain pe-

riod of time (temporal context) [20]. The latter one, how-

ever, can only be applied to busy streets where stable detec-

tion statistics can be determined. Finally, the scale search

space can be limited. With known Ground Sampling Dis-

tance (GSD), the scale of the scene can be normalized and

only few different vehicle sizes in a range between standard

cars and large trucks need to be considered [34].

3. Vehicle Detection

A novel approach for robust vehicle detection using 2-

frame differencing with an integrated vehicle appearance

model is presented in this section. However, before vehi-

cles are detected, images are aligned in order to compen-

sate the image sequence for camera motion. Therefore, we

use SIFT-like features to detect corresponding Harris cor-

ners in consecutive images to estimate frame-to-frame ho-

mographies as global camera motion model. RANSAC is

applied to reject improper feature correspondences. Images

are then warped using a projective transformation.

3.1. 2-Frame Differencing

In order to effectively reduce the search space for subse-

quent vehicle detection, we apply 2-frame differencing [29]

since noise in the difference image coming from image mis-

alignment and parallax effects can be minimized compared

to 3-frame differencing or background subtraction. Inspired

by preprocessing approaches for change detection, we apply

histogram matching (also: histogram specification) [14] to

reduce the global noise coming from rapid changes in cam-

era gain and local mean gray-value normalization [30] to

handle local noise that occurs due to moving mosaic seams.

Please note that histogram matching is not applied to the

large stitched images but to the cropped Areas of Interest

(AOI) that we consider in our experiments in Section 4. In

order to decreases the influence of noise that originates from

misalignment and parallax effects, we consider pixel neigh-

borhoods for difference image calculation as described by

Saur et al. [30] (Eq. 4-6). Finally, we perform postprocess-

ing by calculating the mean gradient magnitudes of both im-

ages and subtracting them from the difference image [29].

The difference image is then binarized by applying quantile

based thresholding [32] instead of Otsu as proposed in [29].

Both thresholding techniques are adaptive, but we achieved

better results by using the quantile based method.

Split detections and ghosting are the main problems of 2-

frame differencing. Ghosting means occurrence of phantom

detections (ghosts) due to wrong assignment of blobs from

the difference image to the original images. This is possible

since each moving object produces two blobs in the differ-

ence image (one at its old and one at its new location), but

we do not know which location is old and which is new,

i.e. which image contributed to which blob. This can be

handled explicitly by using heuristics [29]. In Section 3.3,

however, we handle both problems implicitly.

3.2. Vehicle Model
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Figure 2. Samples from the classifier training data set and the re-

sulting mean ROC curves for 12 experiments.

A classifier model must be learned before sliding win-

dow based vehicle detection can be applied. Therefore, we

use the Ground Truth (GT) to extract four training and test

datasets for classification at different regions in the WPAFB

dataset. These regions do not overlap with the regions used

for the experiments in Section 4. In the original GT, each

track is given by a set of points, where each point represents

the vehicle’s position in one frame. We use the track motion

direction of the GT to rotate vehicle samples in horizontal

direction, semi-automatically generate a bounding box for

each sample with an appropriate size and scale this box to

32 × 16 pixels as visualized in Fig. 2. The aim of rotating

the vehicle samples is to learn a classifier model of higher

discriminative power compared to unrotated samples since

less background is included in the training data. A similar

idea has been described by Shi et al. [31].

We propose to use a descriptor that is based on Dis-

crete Cosine Transform (DCT) [12] and a Random Forest

(RF) classifier that is robust to bad training samples due to

the bagging learning strategy [7]. Those bad samples can

be heavily blurred objects or vehicles without recognizable

shape due to shadows. The RF gives us probabilities for

object existence as confidence values. In our evaluation,

we compare the proposed model with the popular models

Histograms of Oriented Gradients (HOG) + Support Vector

Machine (SVM) [10] and Integral Channel Features (Chn-

Ftrs) + AdaBoost classifier [11]. Each of the four datasets

contains between 100 and 500 vehicle and non-vehicle sam-

ples, respectively. In order to evaluate the three different de-

scriptor/classifier combinations, each classifier is trained on

each dataset (i.e. four models for each descriptor/classifier)

and evaluated with the other three datasets (i.e. 12 exper-

iments for each descriptor/classifier). We add 2,000 non-
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vehicles to each evaluation dataset verify the robustness of

the classifier model. The results are visualized as a mean

Receiver Operating Characteristic (ROC) curve including

the standard deviation. The proposed DCT + RF model

outperforms the other methods especially for parametriza-

tion that generates low FP rates which is important for the

sliding window as we expect much more non-vehicles than

vehicles. The final vehicle model is trained using samples

from all four datasets together.

3.3. Vehicle Detection and Tracklet Hypotheses

In this subsection, we consider the special case of single

vehicle detection. The general case for multiple vehicles in-

cluding split and merge handling is presented in Section 3.4.

The main assumption for our proposed vehicle detection

approach is that each moving object produces at least two

blobs in the difference image when 2-frame differencing is

applied. This is the case for fast and slowly moving vehi-

cles if the contrast compared to the background is strong

enough. We then assume that each blob contains exactly

one vehicle or no vehicle at all. These assumptions are nec-

essary since naı̈vely applying a sliding window in all possi-

ble scales and orientations would lead to a large number of

FP detections at structures that look similar to vehicles such

as road markings, curbs, or buildings. However, 2-frame

differencing is sufficient to derive enough information so

that we can achieve robust vehicle detection without using

context knowledge such as dominant track directions [31]

or road networks [20].

The proposed approach is illustrated in Fig. 3. For two

consecutive images It and It+1 at time t and t+ 1, 2-frame

differencing produces two blobs (white color). Initially, we

do not know which image contributes to which blob (ghost-

ing) and whether there is a vehicle inside any blob or not

(potential FP). However, in order to prove object existence

and achieve robustness, we not only aim to detect the ob-

ject in one image but also to find the correctly matching de-

tections between two frames. Furthermore, as soon as the

correct match is found it can be interpreted as a tracklet hy-

pothesis between the two frames. A sliding window (green

box) is then used around both blob locations in each image

in order to locate the vehicle in both images. The orientation

of the vehicle is assumed to correspond to the motion direc-

tion, so we orient the sliding window according to the line

connecting both blobs (red line). The search is restricted

to two search spaces s1 and s2 (black boxes). They are de-

termined from the blob position and size. In each image

multiple detection hypotheses dit and d
j
t+1 appear. Bright

red color indicates a high classifier confidence. This con-

fidence is given by probabilities P (dit) and P (djt+1) of the

RF classifier where a high probability represents a high cer-

tainty that there is a vehicle at the current sliding window

position.

Now, we aim to find the best matching detections be-

tween It and It+1 by using the similarity probability

P (S|di, dj) for two detection hypotheses di and dj . There-

fore, we calculate an appearance descriptor adopted from

face recognition [2]: we subdivide each detection window

in non overlapping blocks of 8 × 8 pixels and extract his-

tograms of uniform Local Binary Patterns (LBP) and local

variance (VAR) [22] in each block (each histogram has 59

bins). In order to avoid histogram sparsity, LBP and VAR

are calculated with three different radii R ∈ {0.5, 1.0, 2.0}.

Furthermore, we calculate the gray-value histogram of the

entire window (256 bins). These histograms are concate-

nated to a descriptor of size 1,200 and normalized. In this

way, we can capture all available appearance information:

local texture (LBP), local variance (VAR), and brightness

(histogram). The Hellinger distance H(di, dj) [4] can be in-

terpreted as dissimilarity probability and is used to calculate

the similarity probability P (S|di, dj) = 1.0 − H(di, dj)
between two detection hypotheses di and dj . So, the con-

fidence of each tracklet hypothesis θ
i→j
t,t+1 can be calculated

by the likelihood

p(θi→j
t,t+1) = P (S|dit, d

j
t+1) · P (dit) · P (djt+1) (1)

where detection i and j do not come from the same search

space s. Tracklet θt,t+1 that represents the best matching

detection in Fig. 3 is then given by

θ∗t,t+1 = argmax
i,j

(p(θi→j
t,t+1)), (2)

where ∗ indicates the best match for this single vehicle de-

tection problem.

Up to now, we did not discuss image rescaling which

is important to detect vehicles of different size. Rescaling

is introduced by calculating the best tracklet for each scale

and keeping the tracklet with highest confidence. Inspired

by [34] we use three different scales for (1) standard cars,

(2) large cars and small trucks, and (3) trucks and busses.

The proposed method is able to implicitly solve the

ghosting problem, achieve robust vehicle detection under

consideration of different scales and orientations, and pro-

vide tracklet hypotheses that can simplify the data associ-

ation problem of multiple object tracking. Considering all

detection hypotheses coming from s1 and s2 in It and It+1

is necessary to find the best match even in dense traffic,

where there may be vehicles in each search space but we

want to find the only correct match.

3.4. Split and Merge Handling

As we usually do not have such simple cases as shown

in Fig. 3, we aim to achieve robust vehicle detection in

presence of many vehicles and even under split and merge

conditions that are likely to occur when 2-frame differenc-

ing is applied. An example with four vehicles is visual-

ized in Fig. 4 (leftmost image). There are split detections
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Figure 3. Vehicle detection: for image It and It+1, the 2-frame difference produces two blobs. Position, size, and displacement of the

blobs are used to determine two search spaces (black boxes) for a sliding window (green boxes). The best matching detections between It

and It+1 are found by using a similarity measure and their centers are used as start and end point in order to generate a tracklet hypothesis.

2-frame

difference

tracklet
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weighted tracklet
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resulting vehicle detections
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    with four moving vehicles

Figure 4. Multiple vehicle detection is achieved by interconnecting all blobs with a distance less than 100 pixels and by analyzing all

interconnected blobs as described in Fig. 3. The tracklet likelihoods are visualized in colors (red = high, green = low likelihood). Weak

tracklets are rejected. The tracklets can be used for multiple object tracking. By solving a local optimization problem we generate the

resulting vehicle detections that are used in our experiments in Section 4.

and very small blobs due to weak contrast. Hence, reject-

ing small blobs can cause FN detections. So, we intercon-

nect all blobs whose centroids have a Euclidian distance of

100 pixels (i.e. a velocity around 90 km/h or 56 mph) or

less as shown in Fig. 4 (middle image). This results in a

graph-like representation where each connection (or edge)

illustrates a tracklet hypothesis. The likelihood for each

tracklet hypothesis is calculated by using the approach pre-

sented in Fig. 3. In Fig. 4, these likelihood values are visu-

alized in colors: red and orange indicate a high likelihood

while green represents a low likelihood. If there are differ-

ent vehicles inside the search spaces (potential mismatch),

low tracklet likelihoods are expected either due to weak ap-

pearance similarity or due to low classifier confidence re-

sulting from the incorrect orientation of the sliding window.

In Fig. 4, we see another advantage of using oriented slid-

ing windows for vehicle detection: if we would use bound-

ing rectangles without rotating them as it was done in [29],

one of the two bright vehicles that drive close to each other

would probably be considered as a duplicate or split detec-

tion because of the strong overlap of the bounding rectan-

gles.

merge

k-means

2-frame difference
and merge handling

detections
and tracklets

weighted
tracklet

hypotheses
image region at
time    and

Figure 5. Merges are handled by splitting large blobs using k-

means. New tracklet hypotheses that originate from this split are

added to the graph and processed as described in Fig. 4.

In general, split detections can be handled by applying

a non-maximum suppression (NMS) to detect all tracklets

that overlap or cross each other and reject the ones with
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lower likelihood. Merge handling is visualized in Fig. 5.

Blobs inside the difference image that exceed a certain di-

ameter (we use 25 pixels which is about 2.5 times the ex-

pected width of a standard car) are split using k-means with

k = 2. In Fig. 5 this leads to generation of two new blobs

that are highlighted in cyan and magenta color. The tracklet

hypotheses originating from these two blobs are added to

the graph.

A large vehicle will cause undesired merge handling. In

such cases we expect the classifier to detect this vehicle

multiple times at a similar position so that split handling

can correct the erroneous merge assumption.

3.5. Extracting Detections for Evaluation

The resulting tracklets (weighted tracklet hypotheses)

are transferred to a multiple object tracking algorithm that

takes sets of interconnected tracklets as an input instead of

pure detections. In WAMI data with a low framerate of 1 or

2 Hz this considerably simplifies the data association prob-

lem, which is particularly complex for scenes with several

hundreds of moving vehicles. Precalculated tracklet likeli-

hoods additionally facilitate solving of the data association

problem. The tracking algorithm, however, is not discussed

in this paper. In order to measure the performance of the

vehicle detection and to compare it with state-of-the-art de-

tection methods, we thus need to derive detections from the

sets of interconnected tracklets. To do so we seek for a sub-

set of tracklets that have high likelihoods and may co-exist

w.r.t certain constraints (i.e. no crossing tracklets and no

detection sharing by two tracklets). This is done by solving

a local optimization problem for each local graph of inter-

connected tracklets. As a result, a set of detections can be

derived for each frame as shown in Fig. 4 (rightmost image).

Interconnecting detections as described in Section 3.4

and shown in Fig. 4 may lead to large local graphs in ar-

eas with dense traffic. Solving the optimization problem by

considering all possible solutions may thus become quite

inefficient. In order to accelerate this step, we use a ran-

domized greedy algorithm that is described in detail in the

appendix of this paper. This randomized greedy algorithm

is able to find a good solution even for large graphs of con-

nected tracklets where we cannot consider all possible so-

lutions. As mentioned above, it is only used for generating

detections that can be evaluated in Section 4 and does not

belong to the proposed vehicle detection approach.

4. Experimental Results

For our experiments, we use subregions of the WPAFB

2009 dataset that provides ground truth for detections and

tracks. In the test sequence that lasts for approximately

7 minutes, we crop the AOIs 34, 40, and 41 as proposed

by Basharat et al. [5]. The most important test cases are

covered: (1) low/intermediate traffic density with homoge-

neous background in AOI 34, (2) dense traffic with slowly

moving and stopping vehicles at an intersection in AOI 40,

and (3) low traffic density in an urban area with textured

background (trees, buildings) in AOI 41. We do not con-

sider persistent tracking [24, 27] but only focus on moving

objects. Hence, we removed stopping or parked vehicles

from the GT. There are 459 tracks with 27,240 individual

detections in AOI 34, 696 tracks with 41,943 detections in

AOI 40, and 266 tracks with 12,426 detections in AOI 41.

We compare our proposed vehicle detection method to

state-of-the-art frame differencing and background subtrac-

tion algorithms. 2-frame differencing with explicit avoid-

ance of ghosting [29] is the baseline approach. Further-

more, we compare with 3-frame differencing [38], 3-frame

differencing with additional box filter applied to the dif-

ference image [18], 10-frame median background subtrac-

tion with background gradient suppression [28], and back-

ground subtraction with an Interval GMM that considers

pixel neighborhoods [26]. In order to provide a fair com-

parison, we apply exactly the same image alignment ap-

proach, pre-processing methods (histogram matching and

local mean gray-value normalization), and thresholding

technique as described in Section 3. We avoid comparing

our method to vehicle detection approaches that use con-

text knowledge [31, 20]. Although these methods derive

their knowledge directly from the tracks, the detection per-

formance highly depends on the tracking algorithm and the

traffic density.

There are two main parameters: the minimum blob size

and the threshold that is used to binarize the difference im-

ages. We fix the blob size after optimization and vary the

binarization threshold to generate precision-recall curves.

Typical values for the minimum blob size are 30 pixels for

2-frame differencing, 60 for 3-frame differencing, and 70

for background subtraction. 2-frame differencing needs this

low minimum blob size since slowly moving vehicles pro-

duce only small blobs. We consider a detection as true pos-

itive (TP) if the point-to-point distance to the next GT ob-

ject is less than 20 pixels (i.e. 5 m). This large distance is

necessary since shadows can severely pull away detections

from the GT point that is located at the object center. Each

GT object is assigned only once, so all additional detec-

tions nearby are counted as FP detections. Consequently,

for a merged detection we consider one detection as TP and

obtain FNs for all remaining GT objects within the merge

region.

The results are shown in Fig. 6. We significantly im-

prove both precision and recall compared to the baseline ap-

proach [29]. The reason is that we reduce the minimum blob

size to only 5 pixels (reduces FNs) but reject most of the

emerging FPs at the same time by using the vehicle detec-

tor. We clearly outperform the other methods with respect to

precision. However, the rather high FN rate of the baseline
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Figure 6. Detection results given as precision-recall curves for AOI 34, AOI 40, and AOI 41. The baseline approach [29] is significantly

improved by the proposed method. Other approaches taken from the literature are outperformed with respect to precision.

Figure 7. Example detections (red boxes) and ground truth (green

dots) in AOI 34.
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Figure 8. Precision and recall of the resulting tracklets without

optimization.

method cannot be handled by our approach and limits our

recall. Compared to the second best method [28] and with a

fixed recall of 0.8, our approach produces about 2,000 less

FPs in AOI 34, 4,000 in AOI 40, and 750 in AOI 41. The

mean point-to-point distance of all TPs to the GT is similar

with 5.45 pixels compared to 5.75 pixels. In Fig. 7, some ex-

ample detection results (red boxes) and GT objects (green

dots) for AOI 34 are shown.

The precision-recall curve for the tracklets is visualized

in Fig. 8. We used the GT tracks to determine GT tracklets

between pairs of frames. The local optimization was not

applied here since tracking algorithms are supposed to use

the entire set of tracklets in combination with a longer tem-

poral sliding window [29, 9] to achieve a better solution for

the association problem. Promising precision-recall curves

are achieved for AOI 34 and AOI 41. However, numerous

ambiguities in AOI 40 demonstrate that accurate tracking

is still challenging in scenes with dense traffic. In order

to show the suitability of our detection method for multi-

ple object tracking, we connected tracklets with overlapping

detections (red boxes) using a greedy algorithm and plot all

tracks with a length of 50 frames or more in Fig. 9. Each

track is visualized in a different color so that it is possible

to distinguish between different object IDs. Connecting the

tracklets to tracks based on the detection overlap is obvious

since each moving object gets two identical detections per

timestep t: one from the tracklet between frame t− 1 and t

and one from the tracklet between frame t and t+1. So, we

can expect a strong overlap between the two detections and

can use this overlap to connect the tracklets. Even without

using a motion model or track linking, we can generate a

large number of correct and complete tracks. Furthermore,

we can see that tracklets are connected accurately even dur-

ing non-linear vehicle motion such as U-turns. The reason

is that vehicle appearance does not change much between

two consecutive frames and, thus, vehicles are still correctly

re-identified. All these observations indicate that the data

association problem for multiple object tracking can be sig-

nificantly simplified using the proposed vehicle tracklets.

5. Conclusions and Outlook

In this paper, we integrated a novel robust vehicle de-

tection approach to extend and improve 2-frame differenc-
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Figure 9. Example tracks for AOI 34 generated by simple greedy

connection of the tracklets.

ing in WAMI data. This approach not only outperforms

other state-of-the-art detection methods w.r.t. precision but

also provides weighted tracklet hypotheses in consecutive

frames that can considerably simplify data association for

multiple object tracking. This simplification is of interest

as the frame rate in WAMI data is usually only between 1

and 2 Hz and thus the data association problem can become

very complex in scenes with several hundreds of moving ve-

hicles. One drawback of our approach is the large number

of FNs that occur during 2-frame differencing and cannot

be handled with the proposed approach. This number could

be reduced by introducing persistent tracking [27] in a way

that appearance information is combined with the motion

model. In this manner, the appearance model can be used to

detect stopping vehicles, too.

Appendix: Randomized Greedy Algorithm

The idea of the proposed vehicle detection and tracklet

generation approach is to provide vehicle tracklets θ∗i

t,t+1

between two consecutive frames t and t + 1. These track-

lets are arranged in local sets (or graphs) G
g
t,t+1 (with

g ∈ {1, . . . , G}) of interconnected tracklets as shown in

Fig. 4 (4th and 5th images). A tracking algorithm can

now interconnect these local sets of tracklets over several

frames and use cost functions to determine longer tracklets

or tracks, for example. We, however, need to derive detec-

tions from the tracklets in order to compare our proposed

approach to other moving object detection methods taken

from the literature. So, in each of these local sets G
g
t,t+1

we need to find the subset Θg
t,t+1 of strongest tracklets that

may co-exist w.r.t. certain plausibility constraints (e.g., no

crossing tracklets, no detection sharing by two tracklets,

etc.) and reject all others as visualized in the rightmost im-

age of Fig. 4. This is done by solving a local optimization

problem for each set G
g
t,t+1 = {θ∗1

t,t+1, . . . , θ
∗N

t,t+1}. We

use a randomized greedy algorithm that generates C solu-

tions Θgc
t,t+1 = {θ∗1

t,t+1, . . . , θ
∗M

t,t+1} with M < N for each

G
g
t,t+1 and chooses the best Θg

t,t+1 w.r.t. maximum like-

lihood. The Θgc
t,t+1 can be considered as joint association

events. In each iteration c, the greedy algorithm picks track-

lets with highest likelihoods θ∗max

t,t+1 = argmaxi p(θ
∗i

t,t+1)

with θ∗i

t,t+1 ∈ G
g
t,t+1. If tracklets θ

∗j

t,t+1 exist that cross

or share blobs with θ∗max

t,t+1, they are either collected in sub-

set T if |p(θ
∗j

t,t+1) − p(θ∗max

t,t+1)| < ǫ or rejected otherwise

(non-maximum suppression). Only one tracklet is picked

randomly from the subset T and added to solution Θgc
t,t+1.

The other tracklets in T are rejected. The likelihood of each

solution Θgc
t,t+1 is then calculated by

p(Θgc
t,t+1) =

M∏

i=1

p(θ∗i

t,t+1) with θ∗i

t,t+1 ∈ Θgc
t,t+1. (3)

Picking tracklets from a set G
g
t,t+1 in this way may

leave one or even multiple detections without an associa-

tion. Such leftover detections are interpreted as a result

of either a FP detection or a missing detection (FN de-

tection). FP detections can occur due to parallax effects

while typical FN detections emerge when vehicles are oc-

cluded or leave the image. The first case is modeled by

rejecting the respective detection with a fixed FP likeli-

hood (pseudo-tracklet θ∗FP

t,t+1). The second case is modeled

by introducing a pseudo-correspondence with a fixed FN

likelihood (pseudo-tracklet θ∗FN

t,t+1). The likelihoods of the

pseudo-tracklets are also incorporated into the product in

Eq. 3. This approach is inspired by Grinberg et al. [15]. In

general, both likelihood values may be chosen using typi-

cal FP and FN rates, however we choose a fixed value of

p(θ∗FP

t,t+1) = p(θ∗FN

t,t+1) = 0.4.

After having defined multiple joint association events

Θgc
t,t+1 for each set G

g
t,t+1 we pick the best solution

Θg
t,t+1 = argmax

c

p(Θgc
t,t+1). (4)

The resulting overall set of tracklets Θt,t+1 in each frame

tuple (t, t+ 1) is then given by

Θt,t+1 =

G⋃

g=1

Θg
t,t+1. (5)

From this set of tracklets, we take the detections dit (see

Section 3.3) and use them for the evaluation in Section 4.
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