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Abstract

Autonomous and assisted driving are undoubtedly hot

topics in computer vision. However, the driving task is ex-

tremely complex and a deep understanding of drivers’ be-

havior is still lacking. Several researchers are now inves-

tigating the attention mechanism in order to define compu-

tational models for detecting salient and interesting objects

in the scene. Nevertheless, most of these models only refer

to bottom up visual saliency and are focused on still im-

ages. Instead, during the driving experience the temporal

nature and peculiarity of the task influence the attention

mechanisms, leading to the conclusion that real life driv-

ing data is mandatory. In this paper we propose a novel

and publicly available dataset acquired during actual driv-

ing. Our dataset, composed by more than 500,000 frames,

contains drivers’ gaze fixations and their temporal integra-

tion providing task-specific saliency maps. Geo-referenced

locations, driving speed and course complete the set of re-

leased data. To the best of our knowledge, this is the first

publicly available dataset of this kind and can foster new

discussions on better understanding, exploiting and repro-

ducing the driver’s attention process in the autonomous and

assisted cars of future generations.

1. Introduction

Autonomous and assisted driving have recently gained

increasing momentum in the computer vision community.

With the advent of deep learning, many tasks involving vi-

sual understanding –something which cannot be eluded in

driving– have reached human-level performance, and some-

times overtaken it. Examples are pedestrian and vehicle de-

tection and tracking, lanes or road signs recognition and,

ultimately, semantic segmentation, where each pixel gets a

label according to what it represents [5, 37]. All of these

achievements are great examples of subtasks to autonomous

and assisted driving, but we must not forget that the utmost
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Figure 1. An exemplar frame from our dataset. From left to right,

from up to bottom: car-mounted view, driver’s point of view, gaze

map overlay and geo-referenced course.

goal is (better) driving itself. Do humans really need to de-

tect all pedestrians or recognize all signs to drive? Do hu-

mans really need to label the whole scene?

In widely accepted psychological studies on the topic,

the connection between driving, attention and gaze has been

explored [27], negatively answering the above questions. It

is known that humans’ selective attention is a constraint re-

quired by the limited amount of resources available to our

brain. Hence, it is still debatable if this approach may also

bring benefits to visual computing models where the com-

putational resources can be raised by adopting advanced

performant hardware (e.g. GPUs, clusters). Nevertheless,

the act of driving combines attention mechanisms influ-

enced by the driver past experience, the temporal nature of

the task and strong contextual constraints. As a result, we

can drive much more safely and effectively than any auto-

mated system. One of the most relevant open questions in

the field is to establish whether autonomous cars could ben-

efit from attention-like mechanisms as well. Unluckily, this

topic is under-investigated in computer vision and the lack

of a realistic experimental framework does not help.

Our main contribution is a new dataset available to the

community, depicted in Fig. 1. We recorded more than six

hours and 500,000 frames of driving sequences in different
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traffic and weather conditions. For every frame, we also

acquire the driver gaze through an accurate eye tracking de-

vice. Additionally, to favor the car point of view, we project

gaze information on a HD quality video recorded from a

roof-mounted camera. Given the subjective nature of both

attention and driving, experimental design has played a cru-

cial role in preparing the dataset and rule out spurious cor-

relation between driver, weather, traffic, daytime and sce-

nario.

At a computational level, human attention and eye fix-

ation are typically modeled through the concept of visual

saliency. Most of the literature on visual saliency focuses on

filtering, selecting and synthesizing task dependent features

for automatic object recognition. Nevertheless, the majority

of experiments are constructed in controlled environments

(e.g. laboratory settings) and on sequences of unrelated im-

ages [30, 4, 15]. Conversely, our dataset has been collected

“on the road” and it exhibits the following features:

• It is public and open. It provides hours of driving

videos that can be used for understanding the attention

phenomena;

• It is task and context dependent. According to the psy-

chological studies on attention, data are collected dur-

ing a real driving experience thus being as much real-

istic as possible;

• It is precise and scientifically solid. We use high end

attention recognition instruments, in conjunction with

camera data and GPS information.

We believe that our proposal can be useful in several

contexts aimed at understanding the driving phenomenon.

It can be applied to identify and collect new features

tailored for the driving experience (by analogy with what

recently studied for video action recognition [21]). It can

help understanding the influence of motion and semantics

in salient object detection [26, 32]. It can foster the creation

of new driver-centric visual onthologies, and as well serve

the purpose to better understand how driver past experience

affects the importance of objects in the scene.

The paper is organized as follows. In Sec. 2, related works

about computer vision and saliency are provided to frame

the work in the current state of the art scenario. Sec. 3 de-

scribe the acquisition apparatus and protocol while Sec. 4

highlights the dataset features and peculiarities. Eventually,

the paper is concluded with a discussion on the possible

uses of the collected data.

2. Saliency and Gaze in Driving up to Now

Visual saliency determines how much each pixel of a

scene attracts the observer’s attention. This task can be ap-

proached by considering either a bottom up or a top down

strategy. The former refers to data-driven saliency, as when

a salient event pops out in the image. Here, visual disconti-

nuity prevails and computational models focus on spotting

these discontinuities by either clustering features or spot-

ting the rarity of image regions either locally [24, 19] or

globally [1, 34, 6]. On the opposite, top down saliency is

task-driven, and refers to the objects characteristics which

are relevant with respect to the ongoing task. At a glance,

top-down computer vision models tend to exploit the se-

mantic context in the saliency extraction process [29]. This

is achieved by either fusing saliency maps at an increasing

level of scale and abstraction [11], or injecting an a-priori

model of the relevant object using tailored features or pre-

trained detectors [33, 10, 7].

Besides the aforementioned dichotomy between top down

and bottom up saliency methods, deep networks have been

employing the two approaches jointly to solve the task,

achieving competitive results on public benchmarks [16, 17,

14].

In a broader sense, the literature on the topic agrees that

video saliency falls in the latter category. Detecting saliency

in videos is indeed a more difficult task because motion af-

fects the attention mechanism driving the human gaze. Mo-

tion maps are usually fused with bottom up saliency maps

by means of metric learning algorithms or supervised classi-

fiers [38, 35]. In video saliency, motion has been computed

by means of optical flow [38] or feature tracking [35].

2.1. Existing Datasets

Many image saliency datasets have been released in the

past 5 years. They have driven most of the advancements

in understanding the visual attention model and the compu-

tational mechanisms behind it. Most of the publicly avail-

able datasets are focusing on individual image saliency by

capturing several users’ fixation and integrating their spa-

tial location by means of Gaussian filtering. Datasets can

be distinguished between the ones annotated using an eye

tracking system, such as the MIT saliency benchmark [4],

and the ones where users click on images, like the SALI-

CON dataset [15]. For a comprehensive list of datasets, the

reader can refer to this recent survey [2].

While image datasets are publicly available and well es-

tablished in the community, video saliency datasets are still

lacking. Among the most important contributions to the

field, we consider worth mentioning the Action in the Eye

dataset [21], that consists in the largest video dataset pro-

viding human gaze and fixations during the task of action

recognition. On the other hand, few driving datasets have

been adopted for studying the attention phenomenon, with

experiments conducted in laboratory settings and not made

available to the community. In [25, 30], the fixations and

saliency maps are acquired by simulating the driving expe-

rience. This setting is very limited and the observer atten-
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tion can be driven by external factors independent from the

driving task (e.g. monitor distance, normal attitude towards

screen center and others) [27]. The few existing naturalistic

in-car datasets [3, 23] are strictly designed asking the driver

to accomplish a specific task (e.g. looking at people, traffic

sign) and are not publicly available. Perhaps, the dataset

proposed in [23] is the most similar to ours for naturalis-

tic conditions and duration. Yet, it only records data for

one driver, in two countryside scenarios and is not publicly

available.

2.2. Saliency and Gaze for Assisted Driving

In the context of assisted driving, gaze and saliency in-

spection has been mainly studied in task specific environ-

ments and by acquiring the gaze using on screen images.

In [30] object saliency is employed in order to avoid the

looked-but-failed-to-see effect, by inspecting the attention

of the driver towards pedestrian and motorbikes at T junc-

tions. Bremond et al. [25] focus on enhancing the detection

of traffic signs by exploiting visual saliency and a non-linear

SVM classifier. This model was validated in a laboratory

setting, pretending to drive a car and extended to a broader

set of objects (e.g. pedestrian, bicycles) in a naturalistic ex-

periment [3].

Recently, gaze has been studied in the context of preat-

tentive driving, aiming at predicting the driver’s next move

by merely relying on its eye fixation [23]. When driver’s

gaze cannot be directly acquired through eye tracking

systems, a set of independent works propose to inspect

drivers’ faces, using landmarks and predicting the head

orientation [9, 28, 31]. While this mechanism has practical

applications, there are no guarantees on the adherence of

the results to the true gaze during the driving task.

In the current scenario, we believe that a publicly available

dataset specifically tailored for the driving task and acquired

during real driving conditions can significantly contribute to

the research advancement in the field.

3. Apparatus and Acquisition protocol

To acquire information regarding the driver’s gaze, we

adopt the commercial SMI ETG 2w eye tracking glasses

(ETG). Being head-mounted, they allow to fully capture the

driver attention even under severe head pose changes, such

as the ones that naturally occur during the drive. The device

features a HD frontal camera acquiring at 720p/30fps, and

two inner cameras solely devoted to tracking the user’s pupil

at 60fps. It provides information about the user’s gaze in

terms of eye fixations, saccade movements, blinks and pupil

dilation. In order to ensure the highest possible gaze qual-

ity, 3-points calibration is performed before each recorded

sequence to adapt to small changes in the ETG device posi-

tion.

Figure 2. The acquisition rig featuring the head-mounted ETG and

the car-mounted camera.

To collect videos from the car perspective, we adopt a

roof-mounted GARMIN VirbX camera. It acquires videos

at a resolution of 1080p/25fps, embeds an on-board GPS,

accelerometer and gyroscope sensors and is waterproof, al-

lowing to acquire video sequences under very different en-

vironmental conditions. Figure 2 illustrates the aforemen-

tioned acquisition rig.

During the acquisition phase, the two cameras are

started simultaneously and the resulting videos are manu-

ally aligned to the frame in an offline stage to achieve the

best possible synchronization. In order to re-project the

gaze point on the video acquired by the car-mounted cam-

era, local keypoints correspondences are exploited, result-

ing in the gaze information being present on both video se-

quences (see Section 4).

4. Dataset Description and Annotation

To overcome the lacks of the existing datasets described

in Section 2, we acquire and publicly release 74 video se-

quences of 5 minutes each of actual driving experience, for

a total of 555,000 frames1. Eight different drivers alter-

nate during the recording process in order to smooth the

bias given by each person’s peculiar way of driving. To

cover a wider range of scenarios, the videos are recorded

in different areas of the city (downtown, countryside, high-

way) and present a broad reach of traffic conditions going

from traffic-free to very cluttered situations. We also per-

form the recordings during completely diverse atmospheric

conditions (sunny, cloudy and rainy) and in different times

of the day, both at daytime and at night.

While the head-mounted ETG provides its own video se-

1http://imagelab.ing.unimore.it/dreyeve
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Table 1. Table summarizing the different characteristics of the dataset.

# Videos # Frames Drivers Weather conditions Lighting Gaze Info Metadata Camera POVs

74 555,000 8

sunny day raw fixations GPS driver (720p)

cloudy evening gaze map car speed car (1080p)

rainy night pupil dilation car course

quence, it is useful to project the acquired gaze position on

the video acquired by the car-mounted camera. In fact, this

camera features a significantly wider field of view (FoW)

and can display fixations that are captured by the tracking

device but not rendered by its video due to its limited FoW,

such as the ones that occur when the driver peeks at some-

thing without moving his head. Since the two sequences

have been manually aligned, they represent the same scene

from two different but closely related perspectives and an

homography transformation between the two can be em-

ployed to project the fixation points from one sequence to

the other.

To estimate this transformation, Scale Invariant Feature

Transform (SIFT) keypoints are extracted from the two

frames [18] and a first, tentative nearest-neighbor matching

is performed. Despite the sequence alignment, this match-

ing step still produces outliers thus requiring robust tech-

niques in the transformation estimation. For this purpose,

the Random Sample Consensus (RANSAC) algorithm is

employed [8]. Given four randomly selected correspond-

ing points, the algorithm iteratively generates transforma-

tion hypotheses and selects the one that minimizes the re-

projection error. Being H the selected homography matrix

and Pg the fixation point on the ETG video (in homoge-

neous coordinates), its corresponding position on the car-

mounted frame can be recovered as Pc = H × Pg .

Psychological studies [20, 12] demonstrated that the

scanpath of a scene is highly subjective and thus individ-

ual fixation points on a given frame may not be directly

used to build a gaze map. Following this insight, we com-

pute gaze maps at each frame that take into account all the

fixations occurring in an interval of time centered on that

frame. This allows to abstract from individual scanpaths

and to obtain a gaze map that effectively covers the differ-

ent parts of the scene that captured the driver’s attention. To

compute the map for a given frame Fm, a temporal win-

dow of k = 25 frames centered on Fm is selected. The

choice of maps accumulating fixations over 25 frames fol-

lows [13] and ensures that the map accounts for the Inhibi-

tion of Return (IoR) mechanism [22], where broader maps

would incur in redundant gaze information. By computing

the homography transformation between each frame Fm+i

with i = −
k
2
,−k

2
+1, . . . ,+k

2
and Fm, the fixations occur-

ring throughout the sequence are projected on the central

frame. To obtain a smooth map, spatio-temporal Gaussian

smoothing G(σs, σt) is performed on the frame Fm, with

σs = 200 pixels being the spatial variance, and σt = k
2

�� ��+ଵ
��+�/ଶ��−�/ଶ+1

Figure 3. The resulting gaze map from a 25 frames sequence

being the temporal variance. Figure 3 shows an example of

gaze map obtained through this process.

5. Discussion and Open Questions

In this section we pose a few challenges and opportuni-

ties unlocked by the availability of the proposed dataset to

the computer vision community. According to a qualitative

analysis, it appears that when using an image based saliency

prediction method (e.g. [36], which achieves state of the art

performance on [4]), the regions of interest heavily rely on

visual discontinuities resulting in fairly different attention

maps with respect to the driver actual intentions, Figure 4

fourth and fifth columns. While this difference has not yet

been quantitatively studied, it raises a set of open questions

that we believe of interest for the computer vision com-

munity. Investigating the following topics (and possibly

achieving positive answers) may consequently help pushing

forward the field of assisted and autonomous driving.

Can driver’s gaze be predicted?

Despite a large body of psychological literature, the com-

puter vision community has not yet seen effective computa-

tional models able to predict human gaze while driving. In

particular, the temporal nature of the driving task has never
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Figure 4. An example sequence taken from the dataset. Columns from left to right: Garmin VirbX frames, ETG frames with fixation

information, the available gaze map, overlay between the frame and the gaze map, visual saliency predicted using [36]. From up to bottom:

the temporal dimension of the video with 1 frame every 30 displayed.
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been considered. In point of fact, we qualitatively observed

that during red traffic lights and jams, visual saliency mod-

els trained on images could predict driver gaze quite accu-

rately, [16, 4, 36]. Nevertheless, as driving speed increases,

the amount of attention drivers dispose of at each instant

decreases, resulting into very sparse and specific attention

regions. Future models will need to take into account this

behavior to provide reliable accuracy. Moreover, how easier

is this task going to be if we were to feed the driver inten-

tions (e.g. turn right in 10s) to the model?

Can driver’s intentions be anticipated from gaze data?

Here we pose the opposite challenge to gaze prediction, that

is whether we can build models that given video data and re-

lated gaze (true or predicted) are able to estimate the driver

next move. These estimates can include the car turning an-

gle, instantaneous speed, breaking events and so on. On top

of this, the community may build systems able to exploit

intentions prediction to alert the driver in dangerous situa-

tions.

Can gaze models be employed to enhance signalization

and road safety?

While driving we only observe a small part of all the road

signs, cars and traffic lights. In most of the cases, this is

due to drivers’ confidence about the path taken or irrelevant

signalization with respect to driver current intentions. At

the same time, overconfidence during driving may result in

mistakes whenever signals change leading to possible dan-

gerous situations. Local administrations can take advantage

from gaze models to better decide how to place road signals

and traffic lights. This is not a completely new line of work

[25, 3], however the availability of a public dataset can serve

as a unified benchmark for the research community.

Can gaze models help autonomous cars in planning bet-

ter driving strategies?

Autonomous cars leverage on many different levels of struc-

tured information, ranging from lanes detection to seman-

tic segmentation. Nevertheless, autonomous driving is ulti-

mately a decision task. Can gaze information be yet another

level of information to input to this decision process? Can

human-like attention bring benefits to human-less vehicles?

This is probably a far reaching question and we fully expect

better experimental frameworks to be conceived in the fu-

ture in order to answer it. Meanwhile, we make available

the first dataset for the community to download and start

tackling this challenge.

6. Conclusion

We propose a novel dataset that addresses the lack of

public benchmarks concerning drivers’ attention in real-

world scenarios. It comes with pre-computed gaze maps

and contextual information such as the car’s speed and

course. While focusing on the study of the driver’s attention

and gaze, we are planning to further extend its annotation to

semantic labeling and driving actions. The dataset is freely

available for academic research, along with the code used

in the creation of gaze maps and annotation.
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[3] R. Brémond, J.-M. Auberlet, V. Cavallo, L. Désiré,
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