
 

 

 

Abstract 
 

   In real-world object identification systems, the 

operational mission may change from day to day.  For 

example, a target recognition system may be searching for 

heavy armor one day, and surface-to-air assets the next, 

or a radiation detection system may be interested in 

detecting medical isotopes in one instance, and special 

nuclear material in another.  To accommodate this 

“mission of the day” type scenario, the underlying object 

database must be flexible and able to adjust to changing 

target sets. Traditional dimensionality reduction 

algorithms rely on a single basis set that is derived from 

the complete set of objects of interest, making mission-

specific adjustment a significant task.  In this work, we 

describe a method that uses many limited-size individual 

basis sets to represent objects of interest instead of a 

single unifying basis set.  Thus, only the objects of interest 

for the mission at hand are used at any given time, and 

additional objects can be added to the system simply by 

training a basis for the new object.  We demonstrate the 

modular identification system on the problem of 

identifying radioisotopes from their gamma ray spectra 

using nonnegative matrix factorization.    

 

1. Introduction 

Modern identification systems are often required to be 

agile, and able to include or exclude objects of interest on 

the fly as the mission of the day dictates.  Traditional 

subspace methods used for object identification have 

monolithic databases that require recalculation to include 

additional objects, or remove unneeded objects.  The 

technique presented here avoids that shortcoming by 

producing a set of compact, modular object 

representations that can be added or removed as needed.  

We use nonnegative matrix factorization to produce 

physically realizable basis sets for each object of interest.  

Incoming test data is scored against desired templates to 

produce a match score that can be thresholded to produce 

a “match or no match” decision.  Performance is 

demonstrated on the problem of identifying radioisotopes 

from their gamma ray spectra.   

Section 2 outlines previous work with subspace 

techniques as well as radioisotope identification.  Section 

3 describes our modular nonnegative matrix factorization 

technique.  Section 4 discusses the application of the 

technique to radioisotope identification, and Section 5 

summarizes the work and discusses areas for future 

research. 

 

2. Previous work 

 
Matrix factorization is commonly used for data 

reduction in applications such as face recognition [1], [2], 

[3], [4].   In typical applications, a large database of 

training images represented in matrix form is decomposed 

and represented with limited loss in fidelity by a small set 

of representative vectors called basis vectors.  The form of 

those basis vectors is dictated by constraints applied to the 

decomposition, e.g., orthogonality of basis vectors in 

principal components analysis (PCA) [5], statistical 

independence in independent component analysis (ICA) 

[2], or nonnegativity of matrix elements in nonnegative 

matrix factorization (NMF) [6].  NMF is of particular 

interest in applications such as radiation spectra 

identification (where the signatures represent counts of 

gamma ray emissions, and therefore cannot be negative) 

because the basis vectors are physically realizable 

instances of the real-world data.  In contrast, PCA would 

allow for negative elements, which are not possible in the 

case of physical measurements of radiation counts.  In 

addition, NMF constraints tend to yield a representation 

that is “parts-based” instead of holistic, corresponding to 

the intuitive notion that each basis vector should capture 

discrete parts that can be selectively recombined to yield a 

reconstruction.  

 Another key element of previous work with matrix 

factorization techniques for target identification is the fact 

that these algorithms seek global basis sets that apply to a 

large group of objects, e.g., human faces.  This is non-

ideal if the set of objects the system is seeking changes, as 

in a “mission of the day” type scenario.  Adding a new 

object with distinct features to the database means 

recomputing the basis set.  This is impractical in real-
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world object identification systems, which may be rather 

fluid in the objects they seek to identify, meaning they 

must be agile in terms of updateability.   

To date, several researchers have addressed the problem 

of radiation spectra identification [7], [8].  In contrast to 

the work discussed here, previous research has generally 

focused on high fidelity data and a limited number of 

shielding configurations and source-to-detector 

geometries.  One of the most widely used and effective 

techniques uses calculated spectra as exemplars for 

materials of interest [9].  While the technique is effective, 

changes in shielding configuration and detector-to-source 

geometry alter the spectrum and can reduce the quality of 

a match against an exemplar if a spectrum from a similar 

configuration is not in the library.  Other techniques have 

used principal components analysis (PCA) to represent a 

library of isotopes [10], or maximum likelihood estimators 

to determine the probability that a particular source 

produced the given spectrum [7].  Peak search algorithms 

[11] are another common technique for identifying high 

fidelity radiation spectra, however, these techniques are 

less effective when applied to systems with lower 

resolution spectra acquired by sensors such as those 

considered here. 

 

3. Modular nonnegative matrix factorization 
 

Most subspace-based matching algorithms put all of the 

training data for all of the objects of interest into one 

matrix and generate a single basis vector set that spans all 

objects.  The coefficients on those vectors that best fit a 

particular piece of test data are then used for 

discrimination.  In contrast, we treat each object 

individually, generating a separate basis vector set for 

each one.  The ability of a basis set to accurately 

reconstruct a piece of test data is then used for 

discrimination.  We refer to this technique as nonnegative 

matrix factorization matching, or NMFM.  Training data 

that is representative of the variation expected in real-

world data is used.  For example, with high range 

resolution radar signals, one template spans a narrow 

range of viewing angles; with gamma ray spectra one 

template might span a range of material shielding 

thicknesses. 

 

3.1 Template training and basis determination 
 

   The training data examples make up the columns of a 

matrix, V.  Nonnegative matrix factorization attempts to 

approximate V with the product of two matrices, W and H, 

with W the basis vector set and H the coefficients or 

encoding vectors.  Typically, the dimension of W is 

significantly lower than that of V. 

 

܄  ≈  (1) ۶܅

 

The entries in V, W, and H are all nonnegative, making 

this method well-suited to datasets representing physical 

phenomena that cannot contain negative values, such as 

gamma ray spectra.  We use the divergence update rule 

from Lee and Seung to iteratively determine the basis and 

coefficients that best approximate V. [12] 

 

 ൣ۶ሺ௡ሻ൧௜,௝ = ൣ۶ሺ௡ିଵሻ൧௜,௝ ሺ௡ିଵሻᇱ܅ൣ ሺ௡ିଵሻᇱ܅൧௜,௝ൣ܄  ሺ௡ିଵሻ۶൧௜,௝ (2)܅

 

ሺ௡ሻ൧௜,௝܅ൣ  = ሺ௡ିଵሻ൧௜,௝܅ൣ ۶ሺ௡ሻᇱ܄ൣ ൧௜,௝ൣ܅ሺ௡ିଵሻ۶ሺ௡ሻ۶ሺ௡ሻᇱ ൧௜,௝ (3) 

 

 

where subscript (n) indicates the solution obtained at the 

nth iteration. 

   For analysis purposes, it is necessary that the basis 

generation process be repeatable.  Hence, we use a 

deterministic algorithm to initialize the basis set W and the 

coefficients or encoding vectors H.  Namely, we use the 

nonnegative double singular value decomposition method 

in [13] as a starting point. 

 

3.2 Scoring test signatures 
 

 The “template” for a particular object is the set of basis 

vectors W that represent it.  To score a piece of test data, x, against a template, the test signature is decomposed in 

the basis W to yield an approximate reconstruction.  

Decomposing x thus amounts to selection of a single 

vector of coefficients h with a fixed basis W, a fixed test 

signature x and a residual term r. 
  

ܠ  = +ܐ܅  (4) ܚ

 

The decomposition can then be posed as an optimization 

problem with the following objective function: 

 

 ݃ሺܐ܅,ܠሻ = 	෍ሺݔ௜ − ሺܹℎሻ௜ሻଶ௄
௜ୀଵ  (5) 

 

This objective function allows h to be determined using 

computationally efficient least-squares optimization 

techniques, an important distinction given the large 

number of signatures that must generally be scored against 

templates in the types of systems discussed here.   

 Once the coefficients are determined, they are used to 

reconstruct the signature.  The mean-squared error 

between that reconstruction and the original test signature 

then provides a measure of the match quality in the form 

of match score S: 
19



 

 

 

 ܵ = ቈ	∑ ሺݔ௜ 	− ሺܹℎሻ௜ሻଶ௄௜ୀଵ ∑ ௜ݔ 	ଶ௄௜ୀଵ ቉ଵଶ (6) 

 

   Since minimum error is the goal, smaller scores indicate 

stronger matches.  Note that signature amplitude scaling is 

performed to mitigate the impact of variability across 

signatures due to physical phenomena such as signal 

amplitude and object length. 

 

3.3 Modularity considerations 
 

   It is key that the basis size remain small for this type of 

modular system to work effectively.  The algorithm relies 

on the fact that only close matches can be reconstructed 

with the given basis set.  Hence, we use a very small basis 

size, typically 2 or 3 vectors, which tends to force multiple 

features to be represented in a single vector.  This allows 

the basis to capture some intra-target variation, while 

making it very difficult to reconstruct out-of-class targets 

due to the limited amount of flexibility.  If the basis size 

was to grow and features to become separated between the 

different vectors, it becomes easier to reconstruct 

signatures that are not from the intended object. 

   Figure 1 shows an example system block diagram with 

N objects. To identify the presence or absence of a 

particular object in a piece of test data, one need only run 

that piece of test data against that object’s template.  Thus, 

only the objects of interest for the mission at hand are used 

at any given time, and additional objects can be added to 

the system simply by training a basis for the new object.   

 

 
 

Figure 1: Modular NMFM basic system diagram 

 

4.  Radioisotope identification application 
 

We have applied the modular NMFM technique to the 

problem of identifying radioisotopes from their gamma 

ray spectra.  Spectroscopic radiation detection systems 

capture data in the form of gamma ray spectra and may 

operate at points of interest to detect specific materials.  

Much of the data that these systems acquire contains 

ambient background or naturally occurring materials that 

are of little interest.  When objects of interest are 

observed, however, immediate identification is often 

required.  Given the large amount of data and the limited 

availability of trained spectroscopists, automated methods 

are needed to analyze the data and identify radioisotopes 

that may be present.  In the most challenging scenario, 

spectra are collected from highly-shielded radioactive 

sources with very limited total counts due to short 

measurement times. 

Radiation detection systems detect gamma rays emitted 

when an isotope undergoes decay.  The radiation spectrum 

is then a 1D signature that indicates the number of 

detected gamma rays as a function of energy.   The longer 

the system is able to count (and thus, the greater the total 

number of counts in the measurement), the higher the 

quality of the signature.  Radiation spectra that can be 

used to train and test the algorithms under development 

will be required in this effort.  For this purpose, we use the 

Sandia National Laboratories’ Gamma Detector Response 

and Analysis Software (GADRAS) [14] to compute 

radiation spectra.  

 

4.1 Background handling 
 

Radiation spectra contain background radiation from the 

ambient environment.  Traditionally, an estimate of this 

background has been subtracted from the signature prior to 

matching.  In the NMFM algorithm, we treat the current 

background radiation estimate as an additional basis 

vector, b.  We can then find the best fit coefficients h to 

represent a 1D test signature t in isotope basis W (with 

basis vectors in columns, wi), and background estimate b. 
 

ܜ  ≈ ℎଵܟ૚ + ℎଶܟ૛ +  (7) ܊ߚ

 

Once the coefficients have been determined, the 

NMFM-fitted background level can be subtracted from the 

test signature, and the remaining energy is decomposed to 

give a foreground only match score.  By doing this 

subtraction, we avoid the problem of matching 

background only and producing a strong match score. 

 

ܟܜ  = ܜ −  (8) ܊ߚ

 

ෞܟܜ  = ℎ′ଵܟ૚ + ℎ′ଶܟ૛ (9) 

 

 ܵ = ܟܜ| −  ෞ| (10)ܟܜ

 

Figure 2 shows this background handling and scoring 

procedure in the form of a block diagram. 
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4.2 Experimental set-up 

 
We have generated a set of training data that can be 

used to generate templates for a number of radioisotopes 

under different shielding conditions.  In addition, we have 

generated a large set of independent test data to exercise 

those templates.  The available tools for generating 

gamma ray spectra are highly accurate at predicting the 

appearance of these signatures, and so this is considered to 

be a very realistic test [14].  Table 1 shows the list of 

isotopes and shieldings used.  Shieldings are specified in 

terms of an atomic number (e.g., Z10). 

 
Table 1: Isotopes and shieldings included in experiments 

Isotope Shielding 

Ba133 Z10, Z26, Z50, Z74 

I131 Z10, Z26, Z82 

Tc99m Z7, Z10, Z13, Z26 

Cs137 Z6, Z26, Z82 

  

For each material and shielding in the list, a separate 

modular NMFM template was constructed from the 

available training data using the process outlined above.  

The training data was generated assuming a 100 second 

collection time, meaning the resulting profiles are 

extremely low noise.  The amount of shielding was varied 

across the test set, with typically 60 different thicknesses 

included in a single training set.  Each signature contains 

1024 bins of data with the majority of the energy in the 

first 500 bins. 

The test data was then run against all of the available 

templates to produce match scores.  The test data is 

comprised of 2000 novel instances of the in-class 

materials in 2-4 different shielding configurations.  The 

collection times for these signatures were varied from 0.1 

second to 10 seconds, meaning the total gamma ray 

emission counts in each signature varied from the low 

hundreds to more than 10,000 counts.  The noise in these 

signatures is Poisson distributed [8]; hence a lower count 

value translates to greater noise.  Figure 3 shows an 

example training signature with 100 second collection 

time, and example test signatures with collection times of 

0.1, 1, and 4 seconds to demonstrate the amount of noise 

present in very short collection time signatures.  Note the 

total counts for each signature are indicated in the figure. 

 

 
Figure 3: Sample training data (top) and test data for I131 at 

4 seconds, 1 second, and 0.1 second collection times. 

Figure 2: Data flow for background handling and scoring 
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4.3 Results 

 
The ability to discriminate between different materials 

is heavily dependent on the total number of counts in the 

signature, and thus the measurement time and shielding.   

Figure 4 and Figure 5 demonstrate this, showing the 

NMFM score achieved by each template vs. the total 

counts in the test signature for an I131 test source and a 

Ba133 test source respectively.  In these examples, each 

template has 2 basis vectors in addition to the background 

estimate.  Note that in both cases, the ability to 

discriminate the correctly matched isotope from the 

remaining isotopes, indicated by the separation in scores, 

improves as the signature quality improves.  Even with a  

very small number of counts, the field of possible matches  

is significantly reduced by the resulting scores.  For 

example, with only hundreds of counts, it is clear that the 

I131 test source is not Tc99m or Cs137, although the 

scores for the correct match of I131 and the close confuser 

Ba133 are both reasonable. 

We stated in Section 3.3 that the size of the basis is very 

important to the ability to discriminate objects.  While a 

more accurate reconstruction of the correctly matched 

object may be achievable with a larger basis, it also 

becomes easier to reconstruct confusers.  Figure 6 

demonstrates this point, showing the NMFM score 

histograms for a test source of Ba133 against the Ba133, 

I131, and Cs137 templates, using only signatures with at 

least 7000 counts.  Note that with a basis size equal to 2, 

the separation between Ba133 and I131 is very good, 

meaning that the two radioisotopes are easily 

distinguished.  As the basis size increases to 4 and then 8 

vectors, the separation between the scores for the Ba133 

and I131 templates gets smaller and smaller.  The Cs137 

template’s scores move closer to the in-class distribution 

as well.     

 

5 Summary and Future Work 
 

We have presented a modular system for object 

identification that uses nonnegative matrix factorization to 

construct individualized templates for each object of 

interest.  We have demonstrated the system on radiation 

spectra identification, indicating that we are able to 

separate different materials with strong target separation in 

some cases. 

To date, the system has been tested on synthetically-

Figure 5: NMFM score for each template vs. total counts in 

the test signature for an I131 test source. 

Figure 4: NMFM score for each template vs. total counts in 

the test signature for a Ba133 test source. 

Figure 6: Score histograms for Ba133 test source vs. Ba133, 

I131, and Cs137 templates with increasing basis size. 
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generated data.  While synthetically-generated data for this 

application is generally accepted as realistic, a real-world 

test would still be highly informative.  We intend to apply 

the system to real-world data in the near future.  In 

addition, we will consider the feasibility of quantifying 

variables including the amount and type of shielding 

applied to the object under test.  We will also take the 

existing Matlab-based research code and develop it into a 

more user-friendly system to aid spectroscopists in 

analyzing field data. 
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