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Abstract

Besides the recognition task, today’s biometric systems
need to cope with additional problem: spoofing attacks.
Up to date, academic research considers spoofing as a bi-
nary classification problem: systems are trained to dis-
criminate between real accesses and attacks. However,
spoofing counter-measures are not designated to operate
stand-alone, but as a part of a recognition system they will
protect. In this paper, we study techniques for decision-
level and score-level fusion to integrate a recognition and
anti-spoofing systems, using an open-source framework that
handles the ternary classification problem (clients, impos-
tors and attacks) transparently. By doing so, we are able
to report the impact of different spoofing counter-measures,
fusion techniques and thresholding on the overall perfor-
mance of the final recognition system. For a specific use-
case covering face verification, experiments show to what
extent simple fusion improves the trustworthiness of the sys-
tem when exposed to spoofing attacks.

1. Introduction
From identity cards to personal computers’ login infor-

mation: biometrics has become a technology which sup-

ports many of our daily activities. Biometric recognition

systems have been noticing constant improvement despite

problems like illumination conditions, noisy equipment,

wide range of viewpoints, aging of subjects etc. Neverthe-

less, the growing trend of mobile devices usage has popular-

ized a new challenging problem: spoofing attacks. Spoofing

is a non-zero effort attack and occurs when an invalid user

tries to access a biometrically protected system by showing

a copy of the biometric traits of a valid user. Since 2009,

when the face verification systems of several laptops were

successfully deceived by presenting fake facial images [10],

every new commercial biometric verification system is be-

ing put to similar test by security enthusiasts.

The vulnerability to spoofing has been attested for many

biometric modalities [18]. An attacker can spoof face

modality by showing a photo or a video of a valid user,

fingerprint modality with gummy fingers, or iris modality

with high-quality iris photographs. The biometric commu-

nity constantly arrives with new solutions addressing more

and more challenging spoofing attacks [27], [30], [7], [28],

some of which are successful against a variety of at-

tacks [15]. One piece missing in the puzzle seems to be how

to put the anti-spoofing system where it belongs: working

together with a recognition system.

By definition, a spoofing counter-measure is not desig-

nated to operate as a stand-alone system. Its purpose is to

guard a biometric recognition system by performing addi-

tional checks whether the input comes from a live user or is

a fake sample. An applicable biometric system is essentially

a recognition system which may have increased robustness

to spoofing due to being coupled with an anti-spoofing sys-

tem. Yet, the publications on anti-spoofing tend to focus on

the spoofing detection itself and omit to make the link to

a recognition system. A joint operation with a recognition

system is the setup where a spoofing counter-measure gets

its meaning.

The previous observations throw light on two differ-

ent problems. The first one is concerned with evaluation

methodology. Integrating the counter-measure to a recog-

nition system will affect the performance of the latter. In

particular, it will probably reduce its vulnerability to spoof-

ing attacks, but it may also disturb its recognition perfor-

mance. Although evaluating an anti-spoofing system on its

own is valid for comparing the effectiveness of different ap-

proaches against spoofing attacks, the final result that we are

interested in is the performance of the recognition system.

Once the danger of spoofing attacks is acknowledged, the

recognition system has an additional class to discriminate

besides impostors and valid users. Therefore, it needs to

report three performance numbers instead of the two well

known False Acceptance Rate (FAR) and False Rejection

Rate (FRR). The second problem is related to the actual co-

operation of the two systems. What is the best way to blend

in an anti-spoofing system into a recognition system so that

the final product is robust to spoofing, but does not suffer

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.22

98

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.22

98

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.22

98

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.22

98



from significantly reduced recognition accuracy?

The question of integration of a recognition (particularly

in this paper, a verification) and anti-spoofing system for the

face modality is the main subject of this work. We investi-

gated four fusion strategies which accept or reject a verifi-

cation attempt using the outputs both of a face verification

and anti-spoofing system. For this purpose, we selected one

baseline face verification system and three state-of-the-art

counter-measures to face spoofing. We report the perfor-

mance of the face verification algorithm before and after

the fusion and we give a comparative analysis of the fusion

rules using a suitable evaluation framework. As an addi-

tional contribution, we will provide an open-source imple-

mentation of the algorithms for easy reproduction of results.

The paper complies to the following structure: Section 2

delivers an overview of the fusion strategies used in biomet-

rics and the sparse set of attempts for fusion of biometric

recognition and anti-spoofing systems. Section 3 explains

the fusion methodologies we investigated. The experimen-

tal results are presented in Section 4, after an introduction

to the baseline systems involved in our experiments, as well

as the database used for evaluation. Section 5 gives the con-

clusions of our work.

2. Related work
Fusion of multiple experts in biometrics is a well investi-

gated field. It can remedy many limitations of the biometric

systems that depend on a single trait, like sensitiveness to

noisy data or failure-to-enroll problems. Even more, it can

deliver better accuracy than each of the baseline systems

alone [24]. In general, fusion strategies have been only ap-

plied to fuse multiple biometric experts.

The fusion of the biometric systems can happen at sev-

eral points of the recognition pipeline. With regards to

this, the fusion techniques are categorized as sensor-level,

feature-level, score-level, rank-level and decision-level fu-

sion. Having at disposal the outputs of several already de-

veloped systems, in this work we are going to focus on

decision-level and score-level fusion.

The decision-level fusion strategies vary from simple

ones like AND or OR rules, or majority voting, to more

complex ones which rely on the probabilities of errors of

the individual systems [24]. The score-level fusion can be

performed using very simple score combinations, like sum

or order statistics of scores, also referred to as fixed fusion
rules [22]. These schemes require that the scores of the

multiple experts are brought into a common domain by per-

forming score normalization. More advanced schemes rely

on Bayes decision theory: they compute the likelihoods that

the set of multiple experts’ scores belong to each of the

classes and compare them using Likelihood Ratio (LLR).

A nice theoretical foundation of these so-called density-
based fusion rules [24], is given in [14]. Finally, many

systems use the scores as an input to a classifier who takes

the final decision. Examples of these learning-based fusion
rules are k-means or fuzzy clustering [6], Support Vector

Machines (SVM) [4], [11], Linear Discriminant Analysis

(LDA) [4], [23], [26], decision trees [4], [23], multi-layer

perceptron [4], [26], Behavior Knowledge Space [22], [25]

and many more.

The fusion rules can be applied to combine experts

which work with the same biometric modality (like

multi-sensor, multi-algorithm, multi-instance and multi-

sample systems) or different biometric modalities (multi-

modal) [24]. It may be intuitive to imagine that a multi-

modal biometric system will be more robust to spoofing,

because one needs to bring copies of more then one bio-

metric trait to deceive the system. However, in many cases

spoofing only one modality can be enough, as discussed

in [21], [13], [1]. This is highly dependent on the used fu-

sion algorithm, which has inspired fusion schemes specifi-

cally designed to increase the robustness to spoofing. Most

notable are [21] which explores fuzzy logic, and [20] which

extends the LLR scheme by introducing hidden variables

denoting the probability of a spoofing attack. None of the

mentioned work employs an algorithm specialized to detect

spoofing attacks.

Prior work on fusion of biometric recognition and anti-

spoofing system has not been as extensive. In fact, to the

best of our knowledge, there are only two publications treat-

ing this topic and they are in the domain of fingerprint ver-

ification. In [17], an anti-spoofing mechanism is employed

before the verification stage on a multibiometric system

composed of three fingerprint and one face modality. If

a spoofing attack is detected for one modality, the corre-

sponding unimodal system does not contribute to the final

score-level fusion of the multimodal system. On the other

hand, [16] analyzes four different fusion methods. The first

two sequentially employ a fingerprint verification and anti-

spoofing system, or the other way around. The third method

performs classification on the verification and anti-spoofing

scores, while the fourth one creates a Bayesian Network

which models a relationship between the verification and

anti-spoofing scores. An important, but limiting assump-

tion is that the enrollment dataset contains spoofing attacks.

Another limitation is that the output of the third and fourth

method are discrete, which prohibits graphical comparison

with other methods.

3. Fusion strategies
A typical verification system on its own is trained to dis-

criminate only between two classes: valid users as a posi-

tive and impostors as a negative class. If we plot the score

distribution of a good verification system, it should be ex-

pected that the score distributions of the two classes are well

separated. With the appearance of spoofing attacks, instead
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of two, the system is now confronted with three classes:

valid users, impostors and spoofing attacks. Luckily, the

final system we are interested in needs to reject both impos-

tors and spoofing attacks, and thus they can be considered

as one enhanced negative class. However, if the spoofing

attacks are of good quality, their score distribution may be

close to, or even overlap the distribution of the valid users.

As a consequence, the positive and the enhanced negative

class are not that well separated any more.

To remedy this problem, in this work we investigated two

approaches: decision-level and score-level fusion of verifi-

cation system with an anti-spoofing system. The first ap-

proach regulates the decision taken by the verification sys-

tem with an additional check performed by an anti-spoofing

system. The second approach shifts the scores of the spoof-

ing attacks in an attempt to create a margin between them

and the score distribution of the valid users.

Unlike fusion of two biometric recognition experts, our

task at hand requires fusing of two discordant systems: a

verification and an anti-spoofing system are of different na-

ture and have antagonistic criteria for taking a decision. As

illustrated in Table 1, what is positive class for one system

may be negative for the other and vice-versa. In particular,

a verification system has to reject a zero-effort impostor,

while an anti-spoofing system will probably recognize it as

valid access. On the other hand, a verification system may

consider a spoofing attack sample as a positive class, while

the anti-spoofing system is trained to reject it.

valid users impostors spoofs

Verification + - +

Anti-spoofing + + -

Final system + - -

Table 1. Criteria for positive and negative class of a typical verifi-

cation and anti-spoofing system and the final system of interest

Table 1 may give hints about the fusion schemes that we

can employ. In the case of the decision-level fusion ap-

proach, the positive class needs to be accepted by both the

verification and anti-spoofing system, while for the negative

class a rejection from one of the systems is enough. Thus,

we fuse the decisions of the two systems using AND fusion

rule [24].

In the case of score-level fusion, if we note that each of

the separate systems gives high scores to the class it con-

siders as positive and low scores to the class it considers

as negative, then many schemes typically used in biomet-

rics may not be straight-forwardly applicable in this case.

To illustrate the reason, one could consider the classical

Bayesian approaches, like the product or the sum rule of

posterior probability of the class given the evidence [14].

Let us imagine the response of the two systems under a

spoofing attack. The posterior probability that the spoofing
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Figure 1. Fusion of verification and anti-spoofing algorithm

attack is a positive sample may be very high for the verifi-

cation classifier, but very low for the spoofing detector. On

the contrary, it can be expected that the posterior probabil-

ity of a zero-effort impostor will be low for the verification

classifier, and high for the spoofing detector. As a result, in

many cases the final output may be ambiguous and the final

decision wrong.

We investigated three score-level fusion mechanisms and

how they affect the performance of the verification system.

Given the verification score sv and the anti-spoofing score

ss of an input sample, we generate a fused score sf which

combines them together in an appropriate way.

The first explored fusion option belongs to the class of

fixed fusion rules and performs simple sum of the scores.

As an alternative, we consider the scores of the two separate

systems as points in a 2D space, where the first dimension

is sv and the second dimension is ss. After an analysis of

the distribution of the points belonging to the separate three

classes in the 2D space, we can train a suitable learning-

based fusion rule to distinguish between score pairs of the

ultimate positive class (valid users) and the two classes of

negatives (impostors and spoofing attacks). We selected Lo-

gistic Regression (LR) [8] as the first learning based fusion

scheme. Given the 2D data of the training set as input vari-

ables, we fit a logistic hypothesis function given in Eq. 1

by estimating its parameters Θ. The parameters Θ are in a

linear relation with the input variables i.e. x =
(
sv ss

)�

in Eq. 1.

hΘ(x) =
1

1 + e−Θ�x
(1)

Besides LR, we performed experiments with Polyno-

mial Logistic Regression (PLR), where the parameters Θ
are in a polynomial relation with the input variables, i.e.

x =
(
sv ss svss s2v s2s

)�
in Eq. 1. The motivation

lies on the assumption of non-linear separability between

the positive and the negative class.

The workflow of a fused system is illustrated in Figure 1.

Depending on the fusion strategy, the fusion module either

computes two decision thresholds directly on the separate

systems’ output scores sv and ss (decision-level fusion), or
computes a single decision threshold on the combined score
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sf (score-level fusion).

4. Experimental results
The selected use-case scenario for empirical evaluation

of the discussed fusion mechanisms is in the domain of face

verification. Before proceeding with the results, in Sec-

tion 4.1 we give an introduction to the systems that we used

for our experiments: spoofing database, baseline face ver-

ification and anti-spoofing system. As a first experiment,

in Section 4.2 we report the performance of the face ver-

ification algorithm alone, and justify the need of spoofing

counter-measure. Then, in Section 4.3 we proceed with

comparing the fusion algorithms with regards to the anti-

spoofing algorithm used. All the experiments are coded us-

ing the free signal-processing and machine-learning toolbox

Bob1 [2]. The source code of our work is available as free

software to provide easy reproduction of results2

4.1. Spoofing database and baseline systems

Extensive experiments illustrating the outcomes of fu-

sion between face verification and anti-spoofing systems are

performed in a realistic scenario using a state-of-the-art face

verification algorithm as a baseline and several face anti-

spoofing algorithms. An important remark here is that, in

order to train a baseline face verification system, we need

a spoofing database which contains enrollment data which

will be used to create the models of the clients. Then, to

obtain the face verification scores for the real accesses, we

match each of the samples against each of the models of

the enrolled clients in an exhaustive manner. Depending on

whether the model and the sample belong to the same iden-

tity or not, we get score sets for valid users and impostors.

This set of matches compose the so-called licit protocol,

which resembles the typical protocol used for evaluation of

verification systems. To obtain the face verification scores

for the spoofing attacks, we match each of the spoofing sam-

ples to the models of the corresponding client. This set of

matches compose the so-called spoof protocol. While the

licit protocol will be used to assess the verification perfor-

mance of the algorithm, the spoof protocol will be used to

evaluate its performance when spoofing attacks are present.

Note that the positives of both licit and spoof protocol are

the same. Only the licit protocol is involved in the develop-

ment stage, i.e. in determining the decision threshold.

A face spoofing database which delivers enrollment data,

and defines precise training, development and test set for

unbiased evaluation of algorithms, is Replay-Attack [7]. It

contains three types of face spoofing attacks (printed pho-

tos, digital photos displayed on a screen and video attacks)

for a total of 50 identities. Additional advantage is the

1http://www.idiap.ch/software/bob
2Code available at: https://pypi.python.org/pypi/

antispoofing.fusion_faceverif

data in the form of video sequences, which allows for ex-

perimentation with liveness or motion based anti-spoofing

methods requiring temporal data to detect spoofing attacks.

The baseline face verification system is based on [5].

From the input face images, it extracts Discrete Cosine

Transform (DCT) features and builds Gaussian Mixture

Model (GMM) as a Universal Background Model. To train

such a system and obtain the face verification scores, we

used the implementation available in the open-source face

verification framework from [12].

Regarding the face anti-spoofing methods, we experi-

mented with three different algorithms. Two of them are

motivated by the assumption that the face spoofing attacks

and the real accesses have differences in their texture pat-

terns, due to the possible artifacts and image quality degra-

dation that may appear in the printing or recapturing pro-

cedure. In particular, the first algorithm, given in [7], uses

uniform Local Binary Patterns (LBP) [19] to capture the

texture properties and builds the feature vector based on the

LBP histograms. The second algorithm [9] uses an LBP

variant which extends the operator into temporal dimension,

thus capturing dynamic texture properties in three orthogo-

nal planes (LBP-TOP) [29]. The third algorithm [3] ana-

lyzes the motion patterns present in the scene. It is justified

by the observation that the motion patterns on the face and

in the background of an input sample will be correlated in

the case of spoofing attack and de-correlated in the case of

a real access.

4.2. Performance of the face verification system

As stated in Section 1, the presence of spoofing attacks

implies that we report three error rates when evaluating a

face verification system. Among the many possibilities, we

adapt the proposition of [13]. Besides FAR (the ratio of

wrongly accepted impostors), FRR (the ratio of wrongly

accepted impostors), and HTER (Half Total Error Rate) as

an average between FAR and FRR, [13] introduces Spoof

False Acceptance Rate (SFAR), which represents the ra-

tio of successful spoofing attacks among all the available

spoofing attacks.

After training the GMM-based baseline face verification

system using the training set and determining a decision

threshold at the point of Equal Error Rate (EER) for the

development set of Replay-Attack, in Figure 2(a) we plot

the verification scores of the system for the three groups of

samples (valid users, impostors and spoofing attacks) for the

test set, as well as the decision threshold taken at EER on

the development set. The full green line represents the prob-

ability of a spoofing attack deceiving the system depending

on the chosen threshold.

Despite the great performance of the baseline in

the face verification task (FAR=0.05%; FRR=0.24%;
HTER=0.14%), the system is severely deceived when ex-
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Figure 2. GMM-based face verification system: performance fig-

ures

posed to spoofing attacks. The spoofing attacks of Replay-

Attack are closely resembling the real accesses, at least

from the perspective of the analyzed baseline. Indeed, the

verification scores of Replay-Attack are in the range of the

real accesses, resulting in 91.54% of the spoofing attacks

successfully intruding into the system. This demonstrates

the necessity of an anti-spoofing system to protect the face

verification baseline.

Additionally, we plot DET curve of the verification per-

formance of the baseline system using the licit protocol in

Figure 2(b). We overlay that plot with the DET curve of the

spoof protocol. As expected, due to the low separability of

the valid users and spoofing attacks, the overlaid DET curve

is much above DET for licit protocol. Since the positives of

the licit and the spoof protocol overlap as explained in Sec-

tion 4.1, FRR will be the same for the two protocols no mat-

ter what the selected threshold is. Figure 2(b) shows FAR

and SFAR that correspond to FRR=0.24% when the deci-

sion threshold is taken at the EER of the development set.

We hope that securing the baseline system by fusion with

anti-spoofing system will reduce the space between the two

DET curves with as little effect on the licit protocol curve

as possible.

4.3. Performance of the fused systems

With our experiments, we wanted to observe how fusion

with an anti-spoofing system affects the performance of the

baseline face verification system. Table 2 gives HTER on

the licit protocol and SFAR on the spoof protocol for a

fused system using the four fusion strategies. The AND

fusion rule requires estimation of two decision thresholds:

one for the verification and one for the anti-spoofing sys-

tem. The thresholds are taken at EER on the development

set. For the score-level fusion strategies, each sample has

a single fused score and hence a single threshold needs to

be estimated. It is taken at EER on the development set us-

ing the licit protocol. The results are reported on the test

set. Column-wise, one can compare how the choice of anti-

spoofing algorithm affects the system’s performance under

fusion with particular fusion mechanism. Row-wise, com-

parison of different fusion mechanisms for systems using

identical counter-measure is possible.

In comparison to SFAR = 90.54% of the baseline face

verification system, Table 2 shows how the system benefits

from fusion: in all the fused systems SFAR is significantly

reduced. It can go down to as much as only 3.62% when

the fusion is done with LBP-TOP and SUM fusion rule.

Comparing the anti-spoofing algorithms with regards to the

achieved SFAR, LBP-TOP boosts the most the system’s ro-

bustness to spoofing. As for the fusion mechanisms, SUM

fusion outperforms the other fusion rules in rejecting spoof-

ing attacks.

However, the fused systems can not be evaluated solely

based on the reduction of SFAR. Decreasing SFAR almost

always comes with the cost of HTER significantly higher

than the baseline. For example, SUM fusion records the

greatest deterioration of HTER, although its SFAR is lower

then the other fusion rules. On the other hand, PLR fu-

sion is not as effective in rejecting spoofing attacks, but the

verification performance of the system is almost unaffected.

Lacking a heuristic to determine which system performs the

best based on the values of HTER and SFAR, one needs to

choose the system that provides the required trade-off be-

tween these two values.

While the trade-off paradigm is valid when comparing

the fusion rules, choosing the best anti-spoofing algorithm

is not as difficult. LBP-TOP is advantageous with regards

to both HTER and SFAR almost in all the cases.

For a visual comparison of the four types of fusion al-

gorithms with LBP-TOP counter measure, in Figure 3 we

plot their decision boundaries. Each of the plots shows the

distribution of the score points for the samples in the test

set: the x coordinate of a point is its face verification score,

while the y coordinate is its anti-spoofing score. The trade-

off between SFAR and HTER is once again observable in

these plots.

Choosing the setup of a PLR fusion system composed of

GMM-based face verification baseline and LBP-TOP based

anti-spoofing method, in Figure 4 we graphically present

the performance changes of the baseline face verification

system introduced by fusion. Comparing Figure 4(a) with

Figure 2(a), we can observe how fusion shifts the scores of

the spoofing attacks towards the impostors, creating larger

margin between them and the valid users. Figure 4(b) shows

how the DET lines for the licit and spoof protocol appear

to be closer to each other compared to the baseline in Fig-

ure 2(b). This results in a more balanced trade-off between

the verification performance and the robustness to spoofing

for the final system, regardless of the chosen threshold.
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AND SUM LR PLR
HTER SFAR HTER SFAR HTER SFAR HTER SFAR

LBP 11.04 8.93 13.74 6.77 5.17 15.05 3.08 27.1

LBP-TOP 6.46 4.00 7.79 3.62 2.75 9.02 1.48 13.67

MOTION 4.74 11.78 10.31 9.1 2.26 35.34 1.75 39.61

Table 2. Performance table of fused GMM-based face verification and anti-spoofing systems (in %)

(a) AND fusion (b) SUM fusion (c) LR fusion (d) PLR fusion

Figure 3. Decision boundaries for different fusion rules on the scatter plot of the scores of GMM-based face verification and LBP-TOP

anti-spoofing algorithm
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Figure 4. PLR fused system between GMM-based face verification

and LBP-TOP based anti-spoofing system: performance figures

5. Conclusions

Although the research in anti-spoofing records more and

more notable achievements in detecting spoofing attacks,

few of the spoofing detection schemes have been put in a

practical setup where they have to cooperate with a recog-

nition system. An experiment of this kind is very impor-

tant because an anti-spoofing algorithm is not expected to

work on its own and the integration may significantly influ-

ence the performance of the recognition system. This paper

presents an approach to merge an anti-spoofing system to

a face verification system by decision-level and score-level

fusion. Four fusion rules have been tested: AND, SUM, LR

and PLR. The performance of the fused face verification

system is reported by the standard HTER, as well as SFAR

as a ratio of spoofing attacks passing the system. The exper-

iments are conducted using a state-of-the-art GMM-based

face verification system and three different anti-spoofing

methods.

The typical behavior is that there is always a trade-off

between HTER and SFAR of the system. Yet, fusion man-

ages to reduce the ratio of successful spoofing attacks from

91.54% for the particular baseline face verification system,

to less then 10% in some cases. The most successful in

rejecting spoofing attacks is the system created with SUM

fusion rule, but at the worst in terms of verification perfor-

mance. The PLR fusion scheme almost perfectly preserves

the verification capabilities of the baseline system, and still

achieves good robustness to spoofing. It is up to the user to

decide what trade-off of HTER vs. SFAR is convenient for

the given application.

Although the particular use-case presented in this paper

was in face verification, the analyzed fusion mechanisms

are general and can be deployed for other modalities. The

studied fusion schemes do not exhaust all the fusion pos-

sibilities. Besides the vast amount of decision-level and

score-level fusion mechanisms typically used in biomet-

rics, many of which are classifier-based, algorithms specifi-

cally designed for fusion of two systems of different nature

can be attempted as well. Furthermore rank-level, or even

feature-level fusion may be inspected. Regardless of the fu-

sion technique, we believe that the anti-spoofing algorithms

should not be evaluated exclusively in an isolated fashion.

Rather the recognition systems which are protected by an

anti-spoofing algorithm should be evaluated both for recog-

nition performance and robustness to spoofing.
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