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Abstract

In this paper we present and start analyzing the iCub
World data-set, an object recognition data-set, we acquired
using a Human-Robot Interaction (HRI) scheme and the
iCub humanoid robot platform. Our set up allows for
rapid acquisition and annotation of data with correspond-
ing ground truth. While more constrained in its scopes –
the iCub world is essentially a robotics research lab – we
demonstrate how the proposed data-set poses challenges
to current recognition systems. The iCubWorld data-set is
publicly available 1.

1. Introduction

The availability of large data sets, e.g. Caltech-101 [9],

PASCAL VOC [7], ImageNet [5], SUN [23], has had a ma-

jor impact in computer vision. Notably, it has enabled rapid

benchmarking of different algorithms and encouraged re-

producible research. Data-sets, such as Caltech-101 or Im-

ageNet, are very wide and ambitious in their scopes, in that

they aspire to represent the whole (or a large portion) of the

visual world. Indeed, a variety of challenges arise in this

context. Image content has a semantic hierarchy and ob-

ject classes have wide variability due to intrinsic (objects in-

stances may differ) or extrinsic factors (illumination, view-

point, occlusions and shadows). Textures and geometry can

be discriminative factors. Source of nuisance include ob-

jects spatial extent and scale, background vs context, the

presence of multiple objects, possibly with a different focus

∗This work was supported by the European FP7 ICT project No.

270490 (EFAA) and project No. 270273 (Xperience).
1The data-set can be downloaded from: http://www.iit.it/

en/projects/data-sets.html

of interest. Not surprisingly, building good data-sets with

such a broad scope is tricky. For example, data gathering

(labeling) is cumbersome and, most importantly, data-sets

turn out to have often strong biases which prevent gener-

alization [19]. Indeed, image retrieval rather than image

understanding becomes often the key question.

In this work, we shift our attention to the more restricted,

yet challenging, world of the iCub humanoid robot [17]. Vi-

sual tasks in this setting are naturally motivated by further

robotics tasks, e.g. navigation [11] and manipulation [6].

Beyond robotics, the iCub can be seen as a full-body emu-

lation of the human complexity and the iCub world becomes

a natural simplification of the world where humans live. In

this sense, the perceptual challenges presented to the iCub

are similar to those faced by biological beings.

The use of a humanoid robot for the acquisition (and an-

notation) of vision datasets has a natural appeal in terms

of rapid data gathering and ground truth acquisition. As

discussed in the following, data acquisition and annotation

is considerably simpler since it relies on a natural Human

Robot Interaction (HRI) scenario. Human labeling is here

replaced by vocal and gesture interaction of the human su-

pervisor with the robot. Also, a more controlled environ-

ment allows us to reduce biases in the data while tuning the

amount of nuisance factors.

The iCubWorld is an object recognition data-set we

started building following the above scheme. It is some-

what complementary to other vision data-sets in robotics

which are acquired in considerably more constrained set-

tings with a strong supervision on pose and object location

during the training phase (e.g. RGBD Object Dataset [13],

Ikea Kitchen Dataset [25]). The iCubWorld data-set cur-

rently comprises 10 food categories, see Figure 1, that we

will extend over time for example including toys and typical

lab objects. Although the iCubWorld is more restricted in
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Figure 1. The hierarchy of the iCub World. The robot lives in a lab

environment where toys, food and office tools are mainly present.

For the proposed dataset we selected the groceries subset of the

hierarchy. More categories will be available in the next releases.

its scopes, it retains challenging aspects of already available

data-sets, while offering new ones caused by the physical

limitations of the robot.

We demonstrate the challenges of the iCubWorld by ad-

dressing object categorization with a a representative set of

state of the art visual recognition methods. More precisely,

we consider systems based on supervised learning machines

coupled with a two layers feature extraction/learning sys-

tems. The first layer is based on local/low level features

(SIFT) while the second layer extract higher level fea-

tures (bag of words [12], sparse coding [15, 24], locally-

constrained linear coding [22]). The HMAX biologically

inspired architecture is also considered [18].

Our results show these vision systems can achieve good

performances in the iCub world, but performances can drop

drastically as soon as the acquisition conditions change, a

new object instance is considered for a known category, the

object is held by a human other than the original supervisor

or by the iCub itself.

The reminder of the paper is organized as follows. In

Section 2 we describe the iCub setting, in Section 3 we

summarize the current state of the iCubWorld data-set. In

Section 4 we summarize the state-of-the-art on visual recog-

nition we are referring to, while Section 5 reports the results

of our experimental analysis. Section 6 is left to a final dis-

cussion.

2. The iCub HRI setting

The Human Robot Interaction (HRI) setting presents

challenging tasks for learning systems. Indeed, robots hold

only limited knowledge about the world - the information

accessible through their sensors - and yet they are typically

required to generalize these partial observations to more

general contexts. HRI however, is suited for non expensive

acquisition of annotated data: the communication between

the human and a humanoid robot is required to occur ex-

clusively on natural channels (e.g. speech) and thus manual

labeling of individual samples can be avoided.

In the proposed scenario, the iCub robot 2 [17] is shown

one object at a time so that it can learn the object’s appear-

ance to be able to recognize it in the future. A demonstrator

provides verbal annotation, pronouncing the category name

while presenting the object.

We propose two different modalities to exploit the con-

textual information and to perform the approximate local-

ization of the objects within the images:

• Human Mode (Fig. 2 - left). The demonstrator moves

the object in front of the robot, so that the robot can

observe the object from different viewpoints. An inde-

pendent motion detector [4, 8] is employed to identify

a bounding box around the moving target and to have

the robot actively track it with its gaze.

• Robot Mode (Fig. 2 - right) The demonstrator gives

the object to the robot that starts to move its hand in

order to observe the object from multiple points of

view. The system exploits the kinematic structure of

the robot to track the hand (thus the object) in the im-

ages and identify a bounding box around it.

3. The iCubWorld data-set
In Fig. 1 the sketch of a tentative hierarchy of objects of

interest for the iCub is depicted. In this work we selected a

subset of groceries bought in a local supermarket. Further

acquisitions regarding lab/office-type objects (pens, books,

etc.) are currently in progress. The very final goal of the

iCubWorld project is to obtain a rich data-set reproducing

with good accuracy a typical domestic environment. Fol-

lowing the HRI schema described in Sec. 2, we collected

the iCubWorld data-set currently comprising 10 visual ob-

ject categories. We selected objects of different complexity,

shape and texture. For each category we provided 4 dif-

ferent object instances and for each instance 200 examples

(examples of one instance per category are shown in Fig. 3).

The training set has been acquired in the Human Mode and,

to mimic a learning session where a supervisor instructs the

robot to recognize new objects, a single demonstrator shows

the objects to the robot. For each category only 3 object in-

stances used for the training. Overall, each object category

includes 600 images per category. In the test set we include

2The iCub is a humanoid robot with 53 degrees of freedom, equipped

with two actuated digital cameras, microphones for speech acquisition, in-

ertial and force/torque sensors. Additionally, the torso, arms, hands and

fingertips of the iCub are covered with artificial skin that provides haptic

feedback. The software running on the iCub - including the proposed HRI

scheme - is released under the GPL license and it is publicly available for

download www.icub.org.
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Figure 2. The Human-Robot Interaction setting. The iCub’s motion detector (left) and forward kinematics (right) both provide a reasonably

good estimation of the object position withing the image.

examples of all the 4 objects instances per each class, ex-

ploit both acquisition modalities, Robot and Human, and a

different human demonstrator. The original 640× 480 pix-

els images acquired from the iCub cameras have been auto-

matically cropped (see Sec. 2), obtaining 160× 160 images

for the Human mode and 320 × 320 for the Robot mode

respectively.

The proposed data-set presents two main differences

with respect to most typical categorization benchmarks.

First, the HRI domain allows us to design the acquisition

setting so that annotation can be performed automatically.

This efficiently reduces the influence of the (possibly arbi-

trary) interpretation of an individual supervisor. Indeed, in

our case the selection bias is limited to the original choice

of the category representatives, while in typical image re-

trieval settings each single image needs to be selected man-

ually and this leads to data-sets that reflect the supervisor

preferences. Structured clutter represents the second main

aspect of the iCubWorld data-set. In image retrieval settings

images are selected from very different contexts, the back-

ground is highly variable, with the exception of some useful

contextual information [20]. On the contrary, in our setting

images are acquired in a much more limited environment (a

robotics lab) and displayed a much more stable background.

On these respects, the iCubWorld data-set appears to be dif-

ferent from the existing benchmarks.

4. Methods
We briefly review the current state of the art algorithms

for visual recognition tasks, with an emphasis on the so-

called hierarchical models [14, 24, 3, 18] which have been

proved effective on the existing image retrieval benchmarks.

Typically, an unsupervised learning stage is employed

to obtain representations that take into account the domain

of the problem considered. These representations are en-

coded in compact vectors of fixed dimension, that are fed to

a classifier in order to learn the visual appearance of indi-

vidual categories. More specifically, a sequence of descrip-

tors is extracted to encode the local responses of the image

with respect to a predefined (or in some cases learned from

data) set of filters. Common filters are image patches [10],

SIFT [16], SURF [1] or Gabor Filters [18]. In categoriza-

tion problems descriptors are extracted from a dense regular

grid on the image, following the study in [10].

Higher level representations are then built on top of lo-

cal descriptors. In general, an (unsupervised) learning step

adapts the representation to the data. Often a set or dic-

tionary of atoms is learned from data, and subsequently

used to code the available images. Well known methods for

learning the dictionaries are K-Means [12], or Dictionary

Learning techniques [15, 24]. Examples of coding meth-

ods are Vector Quantization (VQ) [14], Sparse Coding (SC)

[24] and Locality-constrained Linear Coding (LLC) [22].

The coding stage produces again a set of local coded de-

scriptors, then a pooling map combines them and encodes

higher-level statistics of the image. It has been empirically

observed instead, that Sparse Coding (SC) favors max pool-

ing over average pooling [2]. This procedure is often asso-

ciated to a spatial pyramid representation [14] of the image.

In this case coding is applied to overlapping regions of the

image pyramid and then all descriptions are simply concate-

nated.

A different perspective is given by the HMAX biolog-

ically inspired framework [18], which is an algorithmic

model of the recognition process in humans. HMAX re-

traces the humans ventral stream structure of simple and

complex cells forming a hierarchy of alternating layers (see

[18] for more details). However the underlying implemen-

tation, alternating filtering and pooling stages, has analogies

with standard visual recognition systems.
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Figure 3. The iCubWorld data-set. 10 categories: Bananas, Bot-

tles, Boxes, Bread, Cans, Lemons, Pears, Peppers, Potatoes, Yo-

gurts. Each category contains 4 different instances.

5. Evaluation
We evaluate the iCubWorld data-set with a set of proto-

typical methods from the literature:

• BOW or Bag of Words [12] consisting of a K-means

followed by vector quantization and average pooling.

• SC or Sparse Coding [24], including a dictionary

learning step, followed by sparse coding and a max

pooling.

• LLC or Locality-constrained Linear Coding [22].

• HMAX [18].

Besides HMAX, which is based on Gabor filters and has

a slightly different structure, the other methods share the

same SIFT [16] feature extraction stage and are organized

in a three-levels Spatial Pyramid Representation [14]. SIFT

features are extracted from a dense grid on the image with

granularity of 8 pixels on patches of 16 × 16 pixels. The

dictionary size is set to 1024. Instead, since HMAX does

not employ a pyramidal pooling, we employ a dictionary of

4096 features for a fair comparison. An SVM [21] classifier

is used to train and test the system.

We perform five different experiments to emphasize the

main aspects of the iCubWorld data-set. For all the experi-

ments, the system has been trained on the same set of data

(described in Sec. 3) of 10 categories, 3 object instances per

category and 200 examples per instance (600 images per

category). Fig. 4 reports, for one object class, a sample

frame of the 3 object instances used for training (first row)

together with samples of each of the 5 test sets.

The experimental analysis is based on a frame-based ac-

curacy, with the exception of Test 4 where we also tried to

exploit the whole video sequence.

5.1. Test T1: Known instances

This experiment is a sanity check to verify the consis-

tency of the proposed dataset: we test the system on a new

set of images depicting the same object instances used for

training shown by the same supervisor. Results in Tab. 1

(first column) report the mean accuracy over the 10 cate-

gories, showing that all methods lead to a good representa-

tion of the observed data.

5.2. Test T2: Generalizing w.r.t. the supervisor

In this test the human supervisor changes with respect to

the one that took care of the training section. We test the

system on the same object instances used for training. In

this case we experience a remarkable performance drop (see

Tab. 1, second column). The best performing image repre-

sentation is SC with an overall mean accuracy of 38.2%. We

argue that this dramatic drop is due to the different appear-

ance of the supervisor and the fact he may possibly move

the object in a different way: thus in the test sequences the

object may be shown w.r.t. new points of view and within a

different background.

5.3. Test T3: Generalizing w.r.t. the object category

The third test is aligned with standard computer vision

datasets, where the goal is to recognize new instances of the

same object category. For this test we use the same super-

visor of the training phase, while we choose an unknown

instance of the known object categories. Again this test

leads to low performances: the highest score is obtained

by SC (44.0%); comparing it to results obtained with the

same method to other datasets such as Caltech-101, we have

a drop of 30% of the accuracy even though only 10 cate-

gories are used. The reached accuracy is comparable to the

one obtained by SC on Caltech-256 (40.14% see [24]), al-

though the iCubWorld appears to be simpler. Fig. 5 reports

the confusion matrix obtained in this case by SC. The ap-

pearance of most categories is not correctly captured by the

method.

5.3.1 The Impact of the Dictionary Size

Given the results obtained in the previous test, we tried to

investigate the impact of different dictionary sizes. In Fig.

6, we show the mean accuracy in categorization for sizes

ranging from K = 256 to K = 2048. Performances seem

to be not affected by the number of atoms and the highest

accuracy is reached for K = 1024. This means that the

number of bases is already able to catch the class variability,

therefore the complexity of the problem lies in the chosen

setting.

5.4. Test T4: Changing the acquisition domain

What we would expect from a visual recognition system

in a robotics setting is the capability to generalize even if

we try to change the domain. For this setting we used se-

quences of objects acquired in the Robot Mode (Sec. 3),

letting the robot grasp the objects (see Fig. 4, fourth row).
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Figure 4. Samples of training and test sets for the object class “yo-

gurt”.

One video for each category has been acquired. Even in this

case poor performances are obtained (see Tab. 1, last col-

umn). In this case we also tried to carry out a video-based

analysis of the results, with a simple winner-takes-all vot-

ing scheme. Again, the highest accuracy has been obtained

by SC (20.0%) that correctly classified only two categories:

bottles and peppers.

5.5. Test T5: Are we really learning the objects?

After the tests described above, we started to investigate

the possible causes of the low performances obtained. The

T1(%) T2(%) T3(%) T4(%)

BOW 78.6 27.8 29.8 14.4

SC 89.8 38.2 44.0 19.2
LLC 87.8 35.7 38.4 13.5

HMAX 91.6 36.0 41.9 17.2

Table 1. Classification accuracy averaged over 10 categories. 600 train-

ing examples per category. Each column represents a particular test set.

Figure 5. Confusion matrix obtained with SC applied to the test

set T3.

T5 Whole(%) Obj(%) Bkg(%)

SC 99.0 80.0 68.0

Table 2. Test T5 results. Whole: the entire bounding box has been used

for object modeling. Obj: only the segmentation around the object is used

for feature extraction. Bkg: features have been extracted only from the

background.

reason appears to be the presence of structured clutter that

cannot be used as further context to learn the objects. In

other words, our conjecture is that current visual recogni-

tion systems work well only when the context can be used

profitably. To confirm this hypothesis, we selected a subset

of 10 images per category, where the classifiers perform an

overall mean accuracy of 99.0%. We manually segmented

the object obtaining two binary masks: one for the object

and one for the background (see Fig. 4, last row). There-

after we try to classify both the images where only the seg-

mented object is presented and images where only the back-

ground is shown. A first surprising result is that the back-

ground is already enough to obtain 68.0% of mean accuracy,

even if the object is not present in the scene (see Tab. 2). On

the other hand, classification performed on the segmented

objects is 80.0%. This means that the context contributes

for 20.0% of accuracy and confirms our intuition that both

object and context have been learned.
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Figure 6. The generalization performances with respect to the dic-

tionary size. Highest accuracy is obtained then the number of

atoms is 1024.

6. Discussion

In this paper we presented the iCubWorld data-set, ac-

quired with the help of a HRI scheme. The data-set cur-

rently includes 10 object categories, but is meant to grow

in the near future, thanks to the simplicity of data acqui-

sition and annotation. We analysed the performances of

a selection of visual recognition methods from the state-

of-the-art over the iCub data-set. The results we achieved

confirm the complexity of the data-set, comparable to stan-

dard computer vision benchmarks, and the presence of new

challenges with respect to image retrieval data-sets. In par-

ticular, a structural background carrying little or no con-

text information for the object, highlighted some limits of

BOW-like methods. Hopefully, having the iCubWorld data-

set publicly available, the computer vision research com-

munity could find new insights and motivations to develop

systems able to work effectively also in the Human Robot

Interaction applications.
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