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Abstract

In a biometric recognition task, the manifold of data is
the result of the interactions between the sub-manifold of
dynamic factors of subjects and the sub-manifold of static
factors of subjects. Therefore, instead of directly construct-
ing the graph Laplacian of samples, we firstly divide each
subject data into a static part (subject-invariant part) and
a dynamic part (intra-subject variations) and then jointly
learn their graph Laplacians to yield a new graph Lapl-
cian. We use this new graph Laplacian to replace the o-
riginal graph Laplacian of Locality Preserving Projections
(LPP) to present a new supervised dimensionality reduc-
tion algorithm. We name this algorithm Globality-Locality
Preserving Projections (GLPP). Moreover, we also extend
GLPP into a 2D version for dimensionality reduction of 2D
data. Compared to LPP, the subspace learned by GLPP
more precisely preserves the manifold structures of the da-
ta and is more robust to the noisy samples. We apply it
to face recognition and gait recognition. Extensive result-
s demonstrate the superiority of GLPP in comparison with
the state-of-the-art algorithms.

1. Introduction

Dimensionality reduction is a fundamental task in ma-
chine learning, biometrics and computer vision. Although
it has been studied over decades, it still experiences a vivid
enthusiasm nowadays. In many biometric systems, the di-
mensionality reduction step is an irreplaceable part of the
system, since the effective low-level features are often high-
dimensional and the unnecessary dimensions need to be
pruned [5, 23].

Over past decades, many impressive dimensionality re-
duction algorithms have been proposed, such as Principal
Component Analysis (PCA) [25, 29], Linear Discriminant
Analysis (LDA) [2, 16], Nonnegative Matrix Factorization
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(NMF) [15], Locality Preserving Projections (LPP) [11], lo-
cally linear embedding (LLE) [21]. Among them, sever-
al manifold-based dimensionality reduction algorithms are
more popular in the recent decade [3, 11, 12, 15, 31], s-
ince some manifold learning studies show that the high-
dimensional samples reside on the nonlinear manifolds e.g.
[21]. The greatest merit of such approaches over the tra-
ditional dimensionality reduction algorithms, such as LDA
and PCA, is that they do not impose any sample distribu-
tion assumption and can handle the nonlinear case. Locality
Preservation Projection (LPP) is one of the representative
manifold-based dimensionality reduction algorithms. LPP
constructs an adjacency matrix to weight the distance be-
tween each pair of sample points for learning a projection
which can preserve the local manifold structures of data.
The weight between two nearby points is much greater than
that between two distant points. So if two points are close
in the original space, then they will be close in the learned
subspace as well. LPP has been successfully applied in
many domains and many impressive LPP algorithms have
been proposed from different aspects in the recent decade,
such as Discriminant LPP (DLPP) [31], Orthogonal LPP
(OLPP)[4], Parametric Regularized LPP (PRLPP) [17].

The core of LPP algorithms is the construction of graph
Laplacian, since the graph Laplacian encodes the manifold
structure of the samples. LPP provides a supervised way
and an unsupervised way to construct the graph Laplacian.
The supervised way puts an edge between each pair of ho-
mogenous samples. In this way, the graph Laplacian can
only capture the geometric structure of dynamic part (intra-
subject variations), such as pose and view, since the static
part of a subject, which is a part invariant to the subject,
is counteracted during the construction. More specifically,
the weight of an edge is often assigned as a kernalization
of the distance between the pair of homogenous samples,
llzi —z;||p = ||Az; — Axjl|,, where z; and z; are two ho-
mogenous samples, Z is the mean sample of a subject and
Az; = z; — T and Ax; = x; — T are the offsets of ; and



z; to the mean sample, Z. In such case, the mean part of
subject, Z, which is deemed as a static part and invariant to
the subject, will not have an impact on the construction of
the graph Laplacian. However, in biometrics, the samples
of different subjects are extracted all from the same biomet-
ric trait. That means that the subjects should share a lot of
properties. So, the static parts of subjects, such as shape
and texture, which are invariant to the subject, should al-
so play an important role in the manifold of biometric data.
In the contrast, the unsupervised way can consider both the
previous two factors via assigning an edge between the each
pair of the samples in the same neighborhood. However, the
main issue of this way is that the neighborhood relationship
may not reveal the real relationship among the samples, s-
ince the samples are often very noisy, which can corrupt the
manifold if there is no supervision of labels.

In this paper, we assume the manifold of data is the result
of the interaction between the manifold of intra-subject fac-
tors (dynamic factors) and the manifold of subject-invariant
factors (static factors). So, we address the previous issues
via jointly learning the graph Laplacians of dynamic factors
and static factors. The new graph Laplacian is the concate-
nation of these two graph Laplacians. We use it to replace
the original graph Laplacian in LPP to present a new LP-
P algorithm. Since the manifold of dynamic factors is a-
mong the samples in a subject while the manifold of static
factors is among the subjects, we name this new LPP al-
gorithm Globality-Locality Preserving Projections (GLPP).
Our work can also be applied to the other LPP algorithm-
s. Moreover, we extend GLPP into a 2D version named
2DGLPP for dimensionality reduction of 2D data. Seven
biometric databases are used for validating our work in face
recognition and gait recognition. The results of experiments
show that GLPP outperforms the state-of-the-art algorithms
and achieves a remarkable improvement over LPP.

2. Locality Preserving Projections (LPP)

In this section, we will introduce the basic notations of
dimensionality reduction and the LPP algorithm [11], which
is the most relevant dimensionality reduction algorithm to
our work.

Let X = [z1,...,@,] C R™ be the sample set. LP-
P aims at learning a projection w that it can translate the
original sample space X into a subspace Y = w!X =
[Y1, .., Y] C RY, in which the geometric structure of data
can be well preserved. Such optimal projection w can be
solved by minimizing the summation of the weighted dis-
tance between pair of two samples as follows

> (yi —vi)*Siy M
i

where the weight S;; is the i, jth entry of the adjacen-
cy weight matrix S, which measures the closeness of two
points z; and z; in the original high-dimensional sample

space. This results in a heavy penalty to apart two neigh-
boring points far away in a learned subspace. In such way,
the learned projection ensures that if samples x; and x; are
close in the sample space then they are close as well in the
learned subspace. To a supervised task, the labels can be
incorporated into the objective function

D wi—u)?Su =1 > (i —y) HS @
%) ceCi,jec
where Hf, is the entry of the adjacency matrix of the sam-

v, : . .
ples belonging to subject c. In such case, matrix S is actu-

ally denoted as follows

Hy 0 0
0 0 Hc

With regard to the weighting of edges, Dot-product weight-
ing and Heat Kernel Weighting are two commonly adopted
weighting schemes [11].

Finally, the objective function of LPP can be reduced to
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where D is a diagonal matrix and its entries are column (or
row, since S is symmetric) sum of S, D;; = > j Si;. The
matrix L = D — S is exactly the graph Laplacian [7].

Furthermore, a constraint is imposed in LPP for normal-
ization

W = arg min (w" XLX"w) (5)

wT' XDXTw=1
Since the matrices XLXT and XDX7 are all symmet-
ric and positive semi-definite, this problem can be solved
by eigenvalue decomposition. The best LPP projection w
is the eigenvector corresponding to the minimum nonzero
eigenvalue of (XDXT)~1XLXT,

3. Proposed Algorithm
3.1. Globality-Locality Preserving Projections

We separate the manifold of data into two sub-manifolds
of static factors and dynamic factors to precisely capture the
manifold structure among the noisy samples. We use the s-
traightforward way to separate the dynamic part and static
part of subject that let the mean sample of subject as the
static part and the difference between the sample and the
mean sample of its corresponding subject be the dynamic
part. Certainly, some other advanced technique can be ap-
plied to separate these two factors.

Let vector C' = [1, 2, ..., p] be the subject labels. Matrix
X.,c € Cis the subset of samples belonging to class c.
Matrix U = [u1, ..., U, ..., up] C R™,i € C denotes the
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mean space of samples where u; is the mean sample of the
subject i. Matrix M = [myq, ...,m;,...,m,] C R%i € C
denotes the projected mean sample space via projecting the
original mean sample space U into the optimal subspace.

In the learned subspace, the manifolds of the static and
dynamic factors in the high-dimensional samples should be
both preserved. These two tasks can be respectively solved
by minimizing the following two objectives

q)s = Z (mz — mj)2Bij (6)
i,7€C
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ceCi,jec

where Ay; = y; —mec,i € cand Ay; = y; —me,j € c.
Jointing these two objectives leads to the objective of our
model, which can jointly solve the previous two issues

U = b+ Bdy ®)
= > (mi—my)*Biy+B8Y > (Ayi — Ay;)*Sy
i,j€C ceCi,jeEc

where (3 is a positive to control the tradeoff of the preserva-
tions of geometric structures of static factors and dynamic
factors. Matrices S and B are the adjacency weight matri-
ces of the dynamic factor objective term, ®4, and the static
factor objective term, @, respectively.

Finally, Equation 8 can be reduced as follows

U= Y (mi—my)’Bi+8Y Y (Ayi— Ay;)’Si

i,j€C ceCi,jeEc
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where K and L.,c € C are the graph Laplacian of the
static factors and the graph Laplacian of the dynamic factors
in subject c respectively. Since K and L. are all the positive
semi-definite matrices, A is a positive semi-definite matrix.
Therefore, this problem reduces to

W = arg min(w” Aw) (10)

can be solved by the eigenvalue decomposition. Since
the conventional supervised LPP algorithm only consider-
s the manifold among the homogenous samples while our
method also considers the manifold of static factors of sub-
jects which is in the subject level, we name the proposed

LPP algorithm Globality-Locality Preserving Projections
(GLPP).

The first d best projections w are corresponding to the
first d minimum nonzero eigenvalues of A. Finally, we can
obtain the projections W = w1, wa, ..., wq).

3.2. A 2D Extension of GLPP 2DGLPP)

In biometrics, sometimes, the input features are the ma-
trices, such as images. In this section, we give an extension
of GLPP algorithm which supports the dimensionality re-
duction in such case. The advantage of this extension over
GLPP is that it can take original structures of 2D data into
consideration.

2DGLPP considers the input data as a matrix instead of a
vector. Let us consider a set of samples G = [g1, g2, ..., gN ]
taken from an m x n dimensional sample space. For dimen-
sionality reduction, we should design a projection w which
maps the original m x n sample into a m dimensional fea-
ture space, y; = g;w,? = 1,2, ..., N. In this subspace, the
samples should enjoy same properties that in the subspace
learned by GLPP.

Same as GLPP, we can get the graph Laplacians of stat-
ic and dynamic factors of subjects. However, we can not
employ these graph Laplacian directly since the input da-
ta is a matrix. For catering the requirement, the Laplacian
matrices should be transformed as follows

lin iz -+ ln 10 0
lor lo2 -+ lan 0 1 0
T=L&I,, = . . . . ®
N ———

(11)
where the operator ® is the Kronecker product of the matri-
ces. Then, the model of 2DGLPP can be further expressed
as follows

Vo= 2w (MK @ LM +8Y (Ge(Le ® In)Ge ))w
ceC
= 20" (MZM" 4+ B> (G.T.G:))w (12)
ceC

where G. = [g1, g1 ,--- ,g]] C G,c € Cisaml x n ma-
trix generated by arranging all the samples ,belong to sub-
ject ¢, in column. Similarly, M = [mT mI ... mT],m; =
> jee 97 18 ame X n matrix generated by arranging mean
sample of each subject in column. Finally, this problem is
formulated to the standard GLPP problem and can be solved
by eigenvalue decomposition.

4. Experiments

In this section, we apply GLPP algorithm in two biomet-
ric tasks, face recognition and gait recognition, to validate
its effectiveness.



4.1. Datasets and Compared Methods

AR [18], ORL [22], FERET [20], Yale [2], LFW-A [27],
Mobo [8] and OU-ISIR-A [24] databases are adopted to e-
valuate the proposed algorithms. AR, ORL, FERET, Yale,
LFW-A databases are the face databases while Mobo and
OU-ISIR-A databases are the gait databases. Note, follow-
ing [19], AR and FERET are the subsets of their original
databases. LFW-A is the aligned version of LFW database.
Following the settings of [30], we only keep the subject-
s who have more than 5 samples. Since LFW-A is a very
challenging database, we use LBP to represent the images.
OU-ISIR-A is a very recent gait database aims to study
the cross-speed gait recognition. It has already define the
gallery and probe sets. Their numbers are 1424 and 1434.
Moreover, we use the Speed Invariant Gait Template (SIGT)
[13] as the features of gait data.

Name Subjects #Samples Feature Dimension

ORL [22] 40 400 Grayscale 1024
Yale [2] 15 165 Grayscale 1024

FERET [20] 72 432 Grayscale 10304
AR [18] 120 1680 Grayscale 2000
LFW-A [27] 274 4758 LBP [1] 2891

Mobo [8] 25 4812 SIGT [13] 33792

OU-ISIR-A [24] 34 1424\1434  SIGT [13] 33792

Table 1. The involved databases

Seven state-of-the-art dimensionality reduction algo-
rithms are used to compare with GLPP. They are Princi-
pal Component Analysis (PCA) [25], Linear Discriminan-
t Analysis (LDA) [2], Exponential Discriminant Analysis
(EDA) [32], Neighborhood preserving embedding (NPE)
[10], Supervised Locality Preserving Projections (LPP)
[11], Unsupervised Locality Preserving Projections (LP-
P2) [11] and Discriminant Locality Preserving Projection-
s(DLPP) [31]. Three state-of-the-art dimensionality reduc-
tion algorithms for 2D data, namely 2DPCA [29], 2DLDA
[16] and 2DLPP [6], are used to compare with 2DGLPP.
In the experiments, Nearest Neighbour Classifier (NN) and
Linear Regression Classifier (LRC) are used for classifica-
tion. In all experiments, 5 is fixed to 10000.

Moreover, three recent regression-based face recognition
methods, namely Linear Regression Classification (LRC)
[19], Sparse Representation Classification (SRC) [28] and
Relaxed Collaborative Representation (RCR) [30], are con-
sidered as compared face recognition methods. Three influ-
ential gait recognition methods, namely, Gait Energy Image
(GEI) [9], Chrono-Gait Image (CGI) [26] and Differential
Composition Model (DCM) [14] are adopted for compari-
son in gait recognition.

4.2. Face Recognition

In Yale, AR, ORL, FERET databases, we apply the s-
tandard cross-validation to evaluate the algorithms, since
the sample number per subject in these databases are same.
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Figure 1. Dimensions vs Accuracies in LFW-A database.

With regard to the LFW-A database, we follow the exper-
imental settings in [30]. The database has been separated
into two subsets. The first subset is constructed by the sub-
jects whose sample numbers range from 6 to 10. The second
subset is constructed by the subjects whose sample num-
bers are above 10. We respectively set the training number
per subject in first and second subsets to 5 and 10. All the
regression-based face recognition methods are directly ap-
plied to the raw samples.

Methods Recognition Rates + Standard Deviation, %
Yale FERET ORL AR
PCA+NN 88.67+2.8 84.03+1.0 8525404  66.73+0.1
LDA+NN 95.334+4.7 90.74+3.3  93.00+0.7 58.57+£1.5
EDA+NN 97.3340.0  92.36+3.6  91.50+3.5 60.89+0.6
NPE+NN 96.00+5.7 93.51£1.3 90.00+4.5 61.614+0.2
LPP+NN 96.67+4.1  92.824+2.3 90.75+£3.9 61.19+0.3
LPP2+NN 88.00+0.0 86.57+0.7 85.254+1.1 67.80+£1.1
DLPP+NN 97.33+3.8  90.51+4.4 93.75£3.1 65.95+2.7
GLPP+NN 98.67+1.9 94.44+39 95.75+1.8 67.4442.9
PCA+LRC 90.66+5.7 85.18£0.7 90.25+£1.8  68.69+0.3
LDA+LRC 96.004+3.8  88.19+5.6  91.75+0.4  59.11+0.9
EDA+LRC 98.67+1.9 93.75+3.6  93.50+4.2 63.69+0.8
NPE+LRC 97.3343.8  92.824+3.6  92.00+3.5 62.3240.6
LPP+LRC 97.3343.8  92.82+1.0 93.00+2.8 63.51+1.1
LPP2+LRC 92.6744.7 88.89+0.7 90.25+1.8  71.01£0.9
DLPP+LRC 96.67+4.2 9144423 94.50+4.9 68.51+2.8
GLPP+LRC | 98.67+1.9 94.67+3.8 9525425 71.30+1.0
" TRCR[30] | 9733438 T 93.52%1.3 93.75£39 76.96+1.4

SRC [28] 97.3342.8 9144404  92.00+3.5 63.87+04
LRC [19] 90.674+5.7 84.72+0.0  88.75+3.2 68.75+0.4

Table 2. Recognition performance comparison (in percents) using
Yale, ORL, FERET and AR databases.

Tables 2 and 3 present the recognition results in five face
databases. It is very clear that GLPP outperforms all the
compared dimensionality reduction algorithms in the ex-
periments of all five databases and outperforms the com-
pared regression-based face recognition methods in all ex-
periments except the one in AR database. Another point
we can learn from the results is that GLPP obtains a re-
markable improvement over LPP. For example, the gains of
GLPP over LPP in subset] and subset2 of LFW-A database
are respectively 5.75% and 13.2%.

Figure 1 shows the relationship between retained dimen-
sions and the recognition accuracies on LFW-A database.
The recognition accuracy of GLPP can keep top in almost
all dimensions and is more robust to the number of re-



Recognition Rate (Retained Dimensions)

Methods subset1 subset2
PCA+NN 35.34%(529) 34.25%(1261)
LDA+NN 58.90%(141) 67.17%(125)
EDA+NN 63.29%(145) 54.15%(127)
NPE+NN 61.37%(145) 65.83%(191)
LPP+NN 58.90%(145) 65.12%(169)
LPP2+NN 36.71%(721) 36.77%(1261)
DLPP+NN 55.34%(289) 58.84%(127)
GLPP+NN 65.20%(289) 72.86%(253)
PCA+LRC 48.49 %(529) 51.89%(1177)
LDA+LRC 58.08%(141) 63.15%(125)
EDA+LRC 65.47%(697) 69.10%(1135)
NPE+LRC 61.37%(226) 66.21%(476)
LPP+LRC 61.92%(505) 68.17%(1135)
LPP2+LRC 53.69%(457) 63.19%(1177)
DLPP+LRC 59.17%(649) 63.19%(883)
GLPP+LRC 67.67%(673) 81.37%(1009)

TTRCR[BO] | T T 65.75% " 7517%
LRC [19] 48.49% 51.76%
SRC [28] 63.01% 69.26%

Table 3. Recognition performance comparison (in percents) using
LFW-A database

tained dimensions. Table 4 represents the recognition re-
sults of several 2D-dimensionality reduction algorithms on
Yale database. Same as GLPP, 2DGLPP outperforms the
compared algorithms.

Methods 2D linear methods-recognition rate (ARA+STD)
2DPCA [29] 2DLDA [16] 2DLPP [6] 2DGLPP
One-out 99.39+2.0 95.15+10.4  98.18£3.1  99.39+2.0
Five-fold 98.67£1.8 94.67+£6.9 98.67+1.8  99.33+1.5
Two-fold 96.00+3.8 90.67+£5.7 97.33+1.9  99.39+2.0

Table 4. Recognition performance comparison (in percents) using
Yale database

4.3. Gait Recognition

On Mobo database, there are four subsets, namely Slow,
Fast, Ball and Incline. In these experiments, we let the Slow
subset be the gallery set while the other three as the probe
set. With regard to OU-ISIR-A database, we follow the ex-
perimental settings in [13]. It separates the gallery set into
three subset according to the walking speed. The speeds of
the subjects of subsetl, subset2 and subset3 are respectively
2-4 km/h, 5-7 km/h and 8-10 km/h.

Tables 5 and 6 respectively present the rank-1 gait recog-
nition accuracies on these two databases. Same as the
results in face recognition, clearly, GLPP outperforms all
the compared algorithms. Another interesting phenomenon
found in the experiments is that, in the noisy subsets, GLPP
can get more gains over LPP. For instance, the gain of GLPP
over LPP is 2.5% in Fast subset while the number is 14.2%
in Incline subset. This is because the samples in Incline sub-
set are much more noisy than the ones in Fast subset. This
phenomenon verifies that our proposed method can better
capture geometric structure of data in the noisy samples.

We also draw Cumulative Match Characteristic (CMC)
curves on OU-ISIR-A database in Figure 2. The observa-

Rank-1 Recognition Accurac
Gallery \ Probe Slow \ Fast Slowg\Ball Slow\)I/ncline
PCA+NN 81.88% 30.84% 30.35%
LDA+NN 92.67% 58.91% 32.11%
EDA+NN 92.60% 64.66% 40.61%
NPE+NN 92.32% 59.57% 35.79%
LPP+NN 90.31% 58.91% 35.52%
LPP2+NN 84.37% 31.60% 34.04%
DLPP+NN 90.87% 62.45% 37.19%
GLPP+NN 92.88% 66.57 % 49.74 %
PCA+LRC 83.26% 33.91% 33.51%
LDA+LRC 84.02% 41.28% 28.25%
EDA+LRC 93.22% 58.62% 40.52%
NPE+LRC 92.19% 63.22% 42.89%
LPP+LRC 91.42% 58.04% 36.05%
LPP2+LRC 83.96% 31.40% 31.23%
DLPP+LRC 91.45% 61.78% 40.18%
GLPP+LRC 93.36 % 65.71% 47.81%
"7 TGEI9] T T | 8485% T 6724% T 54.65%
CGI [26] 79.25% 67.33% 52.37%
DCM [14] 92.00% / /

Table 5. Recognition performance comparison (in percents) using
Mobo database

Training Set Rank-1 Recognition Accuracy
subsetl subset2 subset3
PCA+NN 42.63% 46.14% 40.10%
LDA+NN 64.53% 73.59% 53.79%
EDA+NN 61.73% 71.49% 59.97%
NPE+NN 65.10% 72.12% 55.62%
LPP+NN 63.20% 71.77% 56.32%
LPP2+NN 48.03% 50.91% 40.10%
DLPP+NN 63.13% 63.48% 46.77%
GLPP+NN 70.15% 81.04% 68.61%
PCA+LRC 49.30% 50.35% 42.42%
LDA+LRC 59.41% 62.99% 51.26%
EDA+LRC 58.22% 70.08% 57.51%
NPE+LRC 44.31% 45.08% 44.87%
LPP+LRC 57.79% 71.77% 54.07%
LPP2+LRC 50.63% 52.53% 42.28%
DLPP+LRC 63.55% 64.75% 49.51%
GLPP+LRC 69.66% 79.28% 66.64%

TTGEIT [ 6475% T T 69.87% ~  59.90%

CGI [26] 61.03% 66.15% 45.72%

Table 6. Recognition performance comparison (in percents) using
OU-ISIR A database

tions from Figure 2 demonstrate the superiority of GLPP.

S. Conclusion

In a biometric recognition task, we separated the samples
of a subject into the dynamic part (intra-subject factors) and
the static part (subject-invariant factors). We jointly learn
the graph Laplacians of these two parts and concatenate
them as a new graph Laplaican to replace the original graph
Laplacian in LPP. We name this new algorithm Globality-
Locality Preserving Projections (GLPP). Its advantage over
supervised LPP is that it take between-subject variations in-
to consideration while the advantage over unsupervised LP-
P is that it can utilize the supervised information to allevi-
ate the impact of noises of samples to the manifold learn-
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Figure 2. The CMC curves on OU-ISIR-A database.

We apply GLPP to face recognition and gait recogni-

tion. The results demonstrate the superiority of GLPP over
other state-of-the-art dimensionality reduction algorithms.
Our work is a general trick for constructing the noisy robust
graph Laplacian. So it can be applied to all LPP algorithms.
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