Learning Spatiotemporal Features With 3D Convolutional Networks

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4489-4497

Abstract


We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets; 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets; and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.

Related Material


[pdf]
[bibtex]
@InProceedings{Tran_2015_ICCV,
author = {Tran, Du and Bourdev, Lubomir and Fergus, Rob and Torresani, Lorenzo and Paluri, Manohar},
title = {Learning Spatiotemporal Features With 3D Convolutional Networks},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}