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Abstract

Despite being the appearance-based classifier of choice

in recent years, relatively few works have examined how

much convolutional neural networks (CNNs) can improve

performance on accepted expression recognition bench-

marks and, more importantly, examine what it is they ac-

tually learn. In this work, not only do we show that CNNs

can achieve strong performance, but we also introduce an

approach to decipher which portions of the face influence

the CNN’s predictions. First, we train a zero-bias CNN

on facial expression data and achieve, to our knowledge,

state-of-the-art performance on two expression recognition

benchmarks: the extended Cohn-Kanade (CK+) dataset

and the Toronto Face Dataset (TFD). We then qualita-

tively analyze the network by visualizing the spatial pat-

terns that maximally excite different neurons in the convo-

lutional layers and show how they resemble Facial Action

Units (FAUs). Finally, we use the FAU labels provided in the

CK+ dataset to verify that the FAUs observed in our filter

visualizations indeed align with the subject’s facial move-

ments.

1. Introduction

Facial expressions provide a natural and compact way

for humans to convey their emotional state to another party.

Therefore, designing accurate facial expression recognition

algorithms is crucial to the development of interactive com-

puter systems in artificial intelligence. Extensive work in

this area has found that only a small number of regions

change as a human changes their expression and are located

around the subject’s eyes, nose and mouth. In [7], Paul

Ekman proposed the Facial Action Coding System (FACS)

which enumerated these regions and described how every

facial expression can be described as the combination of

multiple action units (AUs), each corresponding to a partic-

ular muscle group in the face. However, having a computer

Figure 1. Visualization of facial regions that activate five selected

filters in the 3rd convolutional layer of a network trained on the

Extended Cohn-Kanade (CK+) dataset. Each row corresponds to

one filter in the conv3 layer and we display the spatial patterns

from the top 5 images.

accurately learn the parts of the face that convey emotion

has proven to be a non-trivial task.

Previous work in facial expression recognition can be

split into two broad categories: AU-based/rule-based meth-

ods and appearance-based methods. AU-based methods

[29, 30] would detect the presence of individual AUs ex-

plicitly and then classify a person’s emotion based on the

combinations originally proposed by Friesen and Ekman

in [8]. Unfortunately, each AU detector required careful

hand-engineering to ensure good performance. On the other

hand, appearance-based methods [1, 2, 31, 33] modeled a

person’s expression from their general facial shape and tex-

ture
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In the last few years, many well-established problems in

computer vision have greatly benefited from the rise of con-

volutional neural networks (CNNs) as an appearance-based

classifier. Tasks such as object recognition [14], object de-

tection [9], and face recognition [28] have seen huge boosts

in performance on several accepted benchmarks. Unfor-

tunately, other tasks such as facial expression recognition

have not experienced performance gains of the same mag-

nitude. Little work has been done to see how much deep

CNNs can help on accepted expression recognition bench-

marks.

In this paper, we seek the answer to the following ques-

tions: Can CNNs improve performance on emotion recog-

nition datasets/baselines and what do they learn? We pro-

pose to do this by training a CNN on established facial ex-

pression datasets and then analyzing what they learn by vi-

sualizing the individual filters in the network. In this work,

we apply the visualization techniques proposed by Zeiler

and Fergus [32] and Springenberg et al. [25] where indi-

vidual neurons in the network are excited and their corre-

sponding spatial patterns are displayed in pixel space us-

ing a deconvolutional network. When visualizing these dis-

criminative spatial patterns, we find that many of the filters

are excited by regions in the face that corresponded to Fa-

cial Action Units (FAUs). A subset of these spatial patterns

is shown in Figure 1.

Thus, the main contributions of this paper are as follows:

1. We show that CNNs trained for the emotion recog-

nition recognition task learn features that correspond

strongly with the FAUs proposed by Ekman [7]. We

demonstrate this result by first visualizing the spatial

patterns that maximally excite different filters in the

convolutional layers of our networks, and then using

the ground truth FAU labels to verify that the FAUs

observed in the filter visualizations align with the sub-

ject’s facial movements.

2. We also show that our CNN model, based on works

originally proposed by [20, 21], can achieve, to our

knowledge, state-of-the-art performance on the ex-

tended Cohn-Kanade (CK+) dataset and the Toronto

Face Dataset (TFD).

2. Related Work

In most facial expression recognition systems, the main

machinery matches quite nicely with the traditional ma-

chine learning pipeline. More specifically, a face image is

passed to a classifier that tries to categorize it as one of sev-

eral (typically 7) expression classes: 1. anger, 2. disgust, 3.

fear, 4. neutral, 5. happy, 6. sad, and 7. surprise. In most

cases, prior to being passed to the classifier, the face image

is pre-processed and given to a feature extractor. Up until

rather recently, most appearance-based expression recogni-

tion techniques relied on hand-crafted features, specifically

Gabor wavelets [1, 2], Haar features [31] and LBP features

[33], in order to make representations of different expres-

sion classes more discriminative.

For some time, systems based on hand-crafted features

were able to achieve impressive results on accepted ex-

pression recognition benchmarks such as the Japanese Fe-

male Facial Expression (JAFFE) database [19], the ex-

tended Cohn-Kanade (CK+) dataset [18], and the Multi-PIE

dataset [10]. However, the recent success of deep neural

networks has caused many researchers to explore feature

representations that are learned from data. Not surprisingly,

almost all of the methods used some form of unsupervised

pre-training/learning to initialize their models. We hypoth-

esize this may be because the scarcity of labeled data pre-

vented the authors from training a completely supervised

model that did not experience heavy overfitting.

In [17], the authors trained a multi-layer boosted deep

belief network (BDBN) and achieved state-of-the-art accu-

racy on the CK+ and JAFFE datasets. Meanwhile in [23],

the authors used a convolutional contractive auto-encoder

(CAE) as their underlying unsupervised model. They then

performed a semi-supervised encoding function called Con-

tractive Discriminant Analysis (CDA) to separate discrimi-

native expression features from the unsupervised represen-

tation.

A few works based on unsupervised deep learning have

also tried to analyze the relationship between FAUs and

the learned feature representations. In [15, 16], the au-

thors learned a patch-based filter bank using K-means as

their low-level feature. These features were then used to

select receptive fields corresponding to specific FAU recep-

tive fields which were subsequently passed to multi-layer

restricted Boltzmann machines (RBMs) for classification.

The FAU receptive fields were selected using a mutual in-

formation criterion between the image feature and the ex-

pression label. An earlier work by Susskind et al. [27],

showed that the first layer features a deep belief network

trained to generate facial expression images appeared to

learn filters that were sensitive to face parts. We conduct

a similar analysis except we use a CNN as our underly-

ing model and we visualize the spatial patterns that excite

higher-level neurons in the network.

To the authors’ knowledge, the only works that previ-

ously applied CNNs to expression data were that of Ka-

hou et al. [13, 12] and Jung et al. [11]. In [13, 12], the

authors developed a system for doing audio/visual emotion

recognition for the Emotion Recognition in the Wild Chal-

lenge (EmotiW) [6, 5] while in [11], the authors trained a

network that incorporated both appearance and geometric

features when doing recognition. However, one key point

is that these works dealt with emotion recognition of video
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Figure 2. Network Architecture - Our network consists of three convolutional layers containing 64, 128, and 256 filters, respectively, each

of size 5x5 followed by ReLU (Rectified Linear Unit) activation functions. We add 2x2 max pooling layers after the first two convolutional

layers and quadrant pooling after the third. The three convolutional layers are followed by a fully-connected layer containing 300 hidden

units and a softmax layer.

/ image sequence data and therefore, actively incorporated

temporal data when computing their predictions.

In contrast, our work deals with emotion recognition

from a single image, and will focus on analyzing the fea-

tures learned by the network. Thus, not only will we

demonstrate the effectiveness of CNNs on existing emotion

classification baselines but we will also qualitatively show

that the network is able to learn patterns in the face images

that correspond to Facial Action Units (FAUs).

3. Our Approach

3.1. Network Architecture

For all of the experiments we present in this paper, we

use a classic feed-forward convolutional neural network.

The networks we use, shown visually in Figure 2 consist

of three convolutional layers with 64, 128, and 256 filters,

respectively, and with filter sizes of 5x5 followed by ReLU

(Rectified Linear Unit) activation functions. Max pooling

layers are placed after the first two convolutional layers

while quadrant pooling [3] is applied after the third. The

quadrant pooling layer is then followed by a full-connected

layer with 300 hidden units and, finally, a softmax layer

for classification. The softmax layer contains anywhere be-

tween 6-8 outputs corresponding to the number of expres-

sions present in the training set.

One modification that we introduce to the classical con-

figuration is that we ignore the biases of the convolutional

layers. This idea was introduced first by Memisevic et al.

in [20] for fully-connected networks and later extended by

Paine et al. in [21] to convolutional layers. In our exper-

iments, we found that ignoring the bias allowed our net-

work to train very quickly while simultaneously reducing

the number of parameters to learn.

3.2. Network Training

When training our network, we train from scratch us-

ing stochastic gradient descent with a batch size of 64, mo-

mentum set to 0.9, and a weight decay parameter of 1e-5.

We use a constant learning rate of 0.01 and do not use any

form of annealing. The parameters of each layer are ran-

domly initialized by drawing from a Gaussian distribution

with zero mean and standard deviation σ = k
NFAN IN

where

NFAN IN is the number of input connections to each layer

and k is drawn uniformly from the range: [0.2, 1.2].

We also use dropout and various forms of data augmen-

tation to regularize our network and combat overfitting. We

apply dropout to the fully-connected layer with a probabil-

ity of 0.5 (i.e. each neuron’s output is set to zero with proba-

bility 0.5). For data augmentation, we apply a random trans-

formation to each input image consisting of: translations,

horizontal flips, rotations, scaling, and pixel intensity aug-

mentation. All of our models were trained using the anna

software library1.

4. Experiments and Analysis

We use two facial expression datasets in our experi-

ments: the extended Cohn-Kanade database (CK+) [18] and

the Toronto Face Dataset (TFD) [26]. The CK+ database

contains 327 image sequences, each of which is assigned

one of 7 expression labels: anger, contempt, disgust, fear,

happy, sad, and surprise. For fair comparison, we follow the

protocol used by previous works [15, 17], and use the first

frame of each sequence as a neutral frame in addition to the

last three expressive frames to form our dataset. This leads

to a total of 1308 images and 8 classes total. We then split

the frames into 10 subject independent subsets in the man-

ner presented by [15] and perform 10-fold cross-validation.

1https://github.com/ifp-uiuc/anna
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Table 1. Recognition accuracy on the Toronto Face Dataset (TFD)

- 7 classes - A: Data Augmentation, D: Dropout

Method Accuracy

Gabor+PCA [4] 80.2%

Deep mPoT [22] 82.4%

CDA [23] 85.0%

Zero-bias CNN 79.4% ± 1.2%

Zero-bias CNN+D 82.9% ± 2.0%

Zero-bias CNN+A 89.4% ± 1.3%

Zero-bias CNN+AD 89.8% ± 1.8%

TFD is an amalgamation of several facial expression

datasets. It contains 4178 images annotated with one of 7

expression labels: anger, disgust, fear, happy, neutral, sad,

and surprise. The labeled samples are divided into 5 folds,

each containing a train, validation, and test set. We train all

of our models using just the training set of each fold and

evaluate on each split’s test set and average the results.

In both datasets, the images are grayscale and are of size

96x96 pixels. In the case of TFD, the faces have already

been detected and normalized such that all of the subjects’

eyes are the same distance apart and have the same verti-

cal coordinates. Meanwhile for the CK+ dataset, we sim-

ply detect the face in the 640x480 image and resize it to

96x96. The only other pre-processing we employ is patch-

wise mean subtraction and scaling to unit variance.

4.1. Performance on Toronto Face Database (TFD)

First, we analyze the discriminative ability of the CNN

by assessing its performance on the TFD dataset. Table 1

shows the recognition accuracy obtained when training a

zero-bias CNN from a random initialization with no other

regularization as well as CNNs that have dropout (D), data

augmentation (A) or both (AD). We also include recogni-

tion accuracies from previous methods. From the results in

Table 1, there are two main observations: (i) not surpris-

ingly, regularization significantly boosts performance (ii)

data augmentation improves performance over the regular

CNN more than dropout (10.0% vs. 3.5%). Furthermore,

when both dropout and data augmentation are used, our

model is able to exceed the previous state-of-the-art perfor-

mance on TFD by 4.8%.

4.2. Performance on the Extended Cohn­Kanade
Dataset (CK+)

We now present our results on the CK+ dataset. The

CK+ dataset usually contains eight labels (anger, contempt,

disgust, fear, happy, neutral, sad, and surprise). However,

many works [34, 24, 17] ignore the samples labeled as neu-

tral or contempt, and only evaluate on the six basic emo-

tions. Therefore, to ensure fair comparison, we trained two

Table 2. Recognition accuracy on the Extended Cohn-Kanade

(CK+) Dataset - 8 classes - A: Data Augmentation, D: Dropout

Method Accuracy

AURF [15] 92.22%

AUDN [16] 93.70%

Zero-bias CNN 81.8% ± 4.8%

Zero-bias CNN+D 85.6% ± 4.6%

Zero-bias CNN+A 96.3% ± 2.8%

Zero-bias CNN+AD 96.4% ± 3.1%

Table 3. Recognition accuracy on the Extended Cohn-Kanade

(CK+) Dataset - 6 classes - A: Data Augmentation, D: Dropout

Method Accuracy

CSPL [34] 89.89%

LBPSVM [24] 95.10%

BDBN [17] 96.70%

Zero-bias CNN+AD 98.3% ± 1.6%

separate models. We present the eight class model results

in Table 2 and the six class model results in Table 3. For

the eight class model, we conduct the same study we did

on the TFD and we observe rather similar results. Once

again, regularization appears to play a significant role in ob-

taining good performance. Data augmentation gives a sig-

nificant boost in performance (14.5%) and when combined

with dropout, leads to a 14.6% increase. In both the eight

class and six class models, we achieve, to our knowledge,

state-of-the-art accuracy on the CK+ dataset.

4.3. Visualization of higher­level neurons

Now, with a strong discriminative model in hand, we will

analyze which facial regions the neural network identifies as

the most discriminative when performing classification. To

do this, we employ the visualization technique presented by

Zeiler and Fergus in [32].

For each dataset, we consider the third convolutional

layer and for each filter, we find the N images in the cho-

sen split’s training set that generated the strongest magni-

tude response. We then leave the strongest neuron high and

set all other activations to zero and use the deconvolutional

network to reconstruct the region in pixel space. For our

experiments, we chose N=10 training images.

We further refine our reconstructions by employing a

technique called ”Guided Backpropagation” proposed by

Springenberg et al. in [25]. ”Guided Backpropogation”

aims to improve the reconstructed spatial patterns by not

solely relying on the masked activations given by the top-

level signal during deconvolution but by also incorporating

knowledge of which activations were suppressed during the
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Table 4. Correspondences between CK+ visualization plots shown

in Figure 4 and the FAU whose activation distribution had the

highest KL divergence value. The KL divergence values of all

the FAUs computed for each filter are shown in Figure 5.

Filter

Number

FAU with the Largest

KL Divergence Value

1 AU25: Lips Part

2 AU12: Lip Corner Puller

3 AU9: Nose Wrinkler

4 AU5: Upper Lid Raiser

5 AU17: Chin Raiser

6 AU12: Lip Corner Puller

7 AU24: Lip Pressor

8 AU27: Mouth Stretch

9 AU12: Lip Corner Puller

10 AU1: Inner Brow Raiser

forward pass. Therefore, each layer’s output during the de-

convolution stage is masked twice: (i) once by the ReLU of

the deconvotional layer and (ii) again by the mask generated

by the ReLU of the layer’s matching convolutional layer in

the forward pass.

First, we will analyze patterns discovered in the Toronto

Face Dataset (TFD). In Figure 3, we select 10 of the 256

filters in the third convolutional layer and for each filter, we

present the spatial patterns of the top-10 images in the train-

ing set. From these images, the reader can see that several

of the filters appear to be sensitive to regions that align with

several of the Facial Actions Units such as: AU12: Lip Cor-

ner Puller (row 1), AU4: Brow Lowerer (row 4), and AU15:

Lip Corner Depressor (row 9).

Next, we display the patterns discovered in the CK+

dataset. In Figure 4, we, once again, select 10 of the 256

filters in the third convolutional layer and for each filter,

we present the spatial patterns of the top-10 images in the

training set. The reader will notice that the CK+ discrimina-

tive spatial patterns are very clearly defined and correspond

nicely with Facial Action Units such as: AU12: Lip Corner

Puller (rows 2, 6, and 9), AU9: Nose Wrinkler (row 3) and

AU27: Mouth Stretch (row 8).

4.4. Finding Correspondences Between Filter Acti­
vations and the Ground Truth Facial Action
Units (FAUs)

In addition to categorical labels (anger, disgust, etc.), the

CK+ dataset also contains labels that denote which FAUs

are present in each image sequence. Using these labels, we

now present a preliminary experiment to verify that the fil-

ter activations/spatial patterns learned by the CNN indeed

match with the actual FAUs shown by the subject in the im-

age. Our experiment aims to answer the following question:

For a particular filter i, which FAU j has samples whose ac-

tivation values most strongly differ from the activations of

samples that do not contain FAU j, and does that FAU accu-

rately correspond with the visual spatial patterns that maxi-

mally excite filter i?

Given a training set of M images (X) and their corre-

sponding FAU labels (Y ), let Fℓi(x) be the activations of

sample x at layer ℓ for filter i. Since we are examining the

3rd convolutional layer in the network, we set ℓ = 3. Then,

for each of the 10 filters visualized in Figure 4, we do the

following:

(i) We consider a particular FAU j and place the samples

X that contain j in set S where:

S = {xm | j ∈ ym}, ∀m ∈ {1, ...,M}

(ii) We then build a histogram of the maximum activations

of the samples that contained FAU j:

Qij(x) = P (F3i(x) | S), ∀(x, y) ∈ (X,Y )

(iii) We then, similarly, build a distribution over maximum

activations of the samples that do not contain FAU j:

Rij(x) = P (F3i(x) | S
c), ∀(x, y) ∈ (X,Y )

(iv) We compute the KL divergence between Qij(x) and

Rij(x), DKL(Qij ‖ Rij), and repeat the process for

all of the other FAUs.

Figure 5 shows the bar charts of the KL divergences

computed for all of the FAUs for each of the 10 filters dis-

played in Figure 4. The FAU with the largest KL divergence

value is denoted in red and its corresponding name is doc-

umented in Table 4 for each filter. From these results, we

see that in the majority of the cases, the FAUs listed in Ta-

ble 4 match the facial regions visualized in Figure 4. This

means that the samples that appear to strongly influence the

activations of these particular filters are indeed those that

possess the AU shown in the corresponding filter visual-

izations. Thus, we show that certain neurons in the neural

network implicitly learn to detect specific FAUs in face im-

ages when given a relatively ”loose” supervisory signal (i.e.

emotion type: anger, happy, sad, etc.).

What is most encouraging is that these results ap-

pear to confirm our intuitions about how CNNs work as

appearance-based classifiers. For instance, filter 2, 6, and

9 appear to be very sensitive to patterns that correspond to

AU 12. This is not surprising as AU 12 (Lip Corner Puller)

is almost always associated with smiles and from the visual-

izations in Figure 4, a subject often shows their teeth when

smiling, a highly distinctive appearance cue. Similarly, for

filter 8, it is not surprising that FAU 25 (Lips Part) and FAU

27 (Mouth Stretch) had the most different activation distri-

butions given that the filter’s spatial patterns corresponded

to the ”O” shape made by the mouth region in surprised

faces, another visually salient cue.
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Figure 3. Visualization of spatial patterns that activate 10 selected filters in the conv3 layer of our network trained on the Toronto Face

Dataset (TFD). Each row corresponds to one filter in the conv3 layer. We display the top 10 images that elicited the maximum magnitude

response. Notice that the spatial patterns appear to correspond with some of the Facial Action Units.

5. Conclusions

In this work, we showed both qualitatively and quanti-

tatively that CNNs trained to do emotion recognition are

indeed able to model high-level features that strongly cor-

respond to FAUs. Qualitatively, we showed which portions

of the face yielded the most discriminative information by

visualizing the spatial patterns that maximally excited dif-

ferent filters in the convolutional layers of our learned net-

works. Meanwhile, quantitatively, we correlated the numer-

ical activations of the visualized filters with the subject’s

actual facial movements using the FAU labels given in the

CK+ dataset. Finally, we demonstrated how a zero-bias

CNN can achieve state-of-the-art recognition accuracy on

the extended Cohn-Kanade (CK+) dataset and the Toronto

Face Dataset (TFD).
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Figure 4. Visualization of spatial patterns that activate 10 selected filters in the conv3 layer of our network trained on the Cohn-Kanade

(CK+) dataset. Each row corresponds to one filter in the conv3 layer. Once again, we display the top 10 images that elicited the maximum

magnitude response. Notice that the spatial patterns appear to have very clear correspondences with some of the Facial Action Units.
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